In Silico Evaluation of the Inhibition of Pseudomonas aeruginosa Biofilm Production in Burn Wound Infections Using CATH-2 and LL-37 Peptides

  • Priscilla Klaresza Adhiwijaya i3L University, Jakarta, Indonesia
  • Gabriella Zevania Kaitlyn i3L University, Jakarta, Indonesia
  • Louis Valenthenardo i3L University, Jakarta, Indonesia
  • Patricia Tiara Anjani i3L University, Jakarta, Indonesia
  • Mario Donald Bani i3L University, Jakarta, Indonesia
Keywords: CATH-2, LL-37, Biofilm inhibition, Pseudomonas aeruginosa, Burn wound

Abstract

Patients with burn injuries are at high risk of bacterial infection due to the loss of the skin barrier, often leading to complications that contribute to increasing death tolls from burn injuries. The formation of biofilms in bacteria increases its survival rate, especially in the rise of antibiotic resistance cases, which ineffectively combats biofilm production. This research explores the use of two types of cationic antimicrobial peptides, LL-37 and CATH2, commonly originating from humans and chickens, respectively, as a form of host defense in preventing the formation of biofilms by one of the most common pathogenic bacterial strains in severe burn wounds, Pseudomonas aeruginosa, through inhibition in its LPS region. In silico analyses were performed using AlphaFold, GLYCAM-Web, YASARA, and AutoDock Vina. It was found that the CATH-2 model has the strongest binding affinity towards the three types of LPS—alginate, Pel, and Psl—scoring between -5.5 and -6.0 kcal/mol, as opposed to the score range of -4.1 to -6.0 for LL-37. However, the LL-37 model is considered more precise than the CATH-2 model overall, meaning the in silico results of the former are likely more accurate in real life than the latter. These results suggest the utilization of the two peptides as treatments in severe burn cases. In future developments, the application of genetically engineered plasmid-inserted Staphylococcus epidermidis, a commensal bacterium commonly found on human skin, to produce peptides may be considered.

Downloads

Download data is not yet available.

Author Biographies

Priscilla Klaresza Adhiwijaya, i3L University, Jakarta, Indonesia

Department of Biotechnology, i3L University

Gabriella Zevania Kaitlyn, i3L University, Jakarta, Indonesia

Department of Biotechnology, i3L University

Louis Valenthenardo, i3L University, Jakarta, Indonesia

Department of Biotechnology, i3L University

Patricia Tiara Anjani, i3L University, Jakarta, Indonesia

Department of Biotechnology, i3L University

Mario Donald Bani, i3L University, Jakarta, Indonesia

Department of Biotechnology, i3L University

References

Al-Azzawi, M. H., & Alkalifawi, E. J. A. (2023). Detection of bacteria causing burn infection isolated from several hospitals in Baghdad. Ibn AL-Haitham Journal for Pure and Applied Sciences, 36(3), 1–8. https://doi.org/10.30526/36.3.3090

Angkoso, H., & Kekalih, A. (2022). Prognostic factors for mortality of pediatric burn injury in a national tertiary referral center. UI Scholars Hub. https://scholarhub.ui.ac.id/nrjs/vol7/iss2/3/

Bondos, S. E., Dunker, A. K., & Uversky, V. N. (2022). Intrinsically disordered proteins play diverse roles in cell signaling. Cell Communication and Signaling, 20(1), 20. https://doi.org/10.1186/s12964-022-00821-7

Burgess, M., Valdera, F., Varon, D., Kankuri, E., & Nuutila, K. (2022). The immune and regenerative response to burn injury. Cells, 11(19), 3073. https://doi.org/10.3390/cells11193073

Cabral, M. B., Dela-Cruz, C. J., Sato, Y., Oyong, G., Rempillo, O., Galvez, M. C., & Vallar, E. (2022). In silico approach in the evaluation of pro-inflammatory potential of polycyclic aromatic hydrocarbons and volatile organic compounds through binding affinity to the human toll-like receptor 4. International Journal of Environmental Research and Public Health, 19(14), 8360. https://doi.org/10.3390/ijerph19148360

Chen, H., Wubbolts, R. W., Haagsman, H. P., & Veldhuizen, E. J. A. (2018). Inhibition and eradication of Pseudomonas aeruginosa biofilms by host defence peptides. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-28842-8

Chung, J., Eisha, S., Park, S., Morris, A. J., & Martin, I. (2023). How three self-secreted biofilm exopolysaccharides of pseudomonas aeruginosa, psl, pel, and alginate, can each be exploited for antibiotic adjuvant effects in cystic fibrosis lung infection. International Journal of Molecular Sciences, 24(10), 8709. https://doi.org/10.3390/ijms24108709

Corbo, T., Kalajdzic, A., Delic, D., Suleiman, S., & Pojskic, N. (2022). In silico prediction suggests inhibitory effect of halogenated boroxine on human catalase and carbonic anhydrase. Journal of Genetic Engineering and Biotechnology, 20(1), 153. https://doi.org/10.1186/s43141-022-00437-x

Dewani, N. T., Budi, A. S., & Koendhori, E. B. (2024). Antibiotic resistance in bacteria on burn wound patients: A review of current literature. International Journal of Scientific Advances, 5(6). https://doi.org/10.51542/ijscia.v5i6.49

Farhana, A., & Khan, Y. S. (2023). Biochemistry, lipopolysaccharide. In StatPearls [Internet]. StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK554414/

Ghosh, A., Jayaraman, N., & Chatterji, D. (2020). Small-molecule inhibition of bacterial biofilm. ACS omega, 5(7), 3108-3115. https://pubs.acs.org/doi/full/10.1021/acsomega.9b03695

Gonzalez, M. R., Fleuchot, B., Lauciello, L., Jafari, P., Applegate, L. A., Raffoul, W., Que, Y. A., & Perron, K. (2016). Effect of human burn wound exudate on Pseudomonas aeruginosa virulence. mSphere, 1(2), e00111–15. https://doi.org/10.1128/mSphere.00111-15

Greenhalgh, D. G. (2019). Management of burns. The New England Journal of Medicine, 380(24), 2349–2359. https://doi.org/10.1056/NEJMra1807442

Gyawali, B., Ramakrishna, K., & Dhamoon, A. S. (2019). Sepsis: The evolution in definition, pathophysiology, and management. SAGE Open Medicine, 7, 2050312119835043. https://doi.org/10.1177/2050312119835043

Hateet, R. (2021). Isolation and identification of some bacteria contemn in burn wounds in Misan, Iraq. Archives of Razi Institute, 76(6), 1665. https://doi.org/10.22092/ari.2021.356367.1833

Hughes, G., & Webber, M. A. (2017). Novel approaches to the treatment of bacterial biofilm infections. British Journal of Pharmacology, 174(14), 2237–2246. https://doi.org/10.1111/bph.13706

Huszczynski, S. M., Lam, J. S., & Khursigara, C. M. (2019). The Role of Pseudomonas aeruginosa Lipopolysaccharide in Bacterial Pathogenesis and Physiology. Pathogens, 9(1), 6. https://doi.org/10.3390/pathogens9010006

Jeschke, M. G., van Baar, M. E., Choudhry, M. A., Chung, K. K., Gibran, N. S., & Logsetty, S. (2020). Burn injury. Nature Reviews Disease Primers, 6(1), 11. https://doi.org/10.1038/s41572-020-0145-5

Khurshid, Z., Naseem, M., Asiri, F. Y. I., Mali, M., Khan, R. S., Sahibzada, H. A., Zafar, M. S., Moin, S. F., & Khan, E. (2017). Significance and Diagnostic Role of Antimicrobial Cathelicidins (LL-37) Peptides in Oral Health. Biomolecules, 7(4), 80–80. https://doi.org/10.3390/biom7040080

Kulandaisamy, A., Lathi, V., ViswaPoorani, K., Yugandhar, K., & Gromiha, M. M. (2017). Important amino acid residues involved in folding and binding of protein–protein complexes. International Journal of Biological Macromolecules, 94, 438-444. https://doi.org/10.1016/j.ijbiomac.2016.10.045

Kulkarni, N. N., O'Neill, A. M., Dokoshi, T., Luo, E. W. C., Wong, G. C. L., & Gallo, R. L. (2021). Sequence determinants in the cathelicidin LL-37 that promote inflammation via presentation of RNA to scavenger receptors. The Journal of Biological Chemistry, 297(1), 100828. https://doi.org/10.1016/j.jbc.2021.100828

Lee, E., & Anjum, F. (2023, April 27). Staphylococcus epidermidis Infection. Nih.gov; StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK563240/

Lu, J., Yang, M., Zhan, M., Xu, X., Yue, J., & Xu, T. (2017). Antibiotics for treating infected burn wounds. The Cochrane Database of Systematic Reviews, 2017(7), CD012084. https://doi.org/10.1002/14651858.CD012084.pub2

Melamed, J., & Brockhausen, I. (2021). Biosynthesis of bacterial polysaccharides. Comprehensive Glycoscience, 3, 143–178. https://doi.org/10.1016/B978-0-12-819475-1.00097-3

Memariani H., & Memariani, M. (2023). Antibiofilm properties of cathelicidin LL-37: An in-depth review. World Journal of Microbiology & Biotechnology Incorporating the MIRCEN Journal of Applied Microbiology and Biotechnology/World Journal of Microbiology & Biotechnology, 39(4). https://doi.org/10.1007/s11274-023-03545-z

Norbury, W., Herndon, D. N., Tanksley, J., Jeschke, M. G., Finnerty, C. C., & Scientific Study Committee of the Surgical Infection Society. (2016). Infection in burns. Surgical infections, 17(2), 250–255. https://doi.org/10.1089/sur.2013.134

Ordonez, S. R., Amarullah, I. H., Wubbolts, R. W., Veldhuizen, E. J., & Haagsman, H. P. (2014). Fungicidal mechanisms of cathelicidins LL-37 and CATH-2 revealed by live-cell imaging. Antimicrobial agents and chemotherapy, 58(4), 2240–2248. https://doi.org/10.1128/AAC.01670-13

Pangli, H., & Papp, A. (2019). The relation between positive screening results and MRSA infections in burn patients. Burns, 45(7), 1585-1592. https://doi.org/10.1016/j.burns.2019.02.023

Preda, V. G., & Săndulescu, O. (2019). Communication is the key: Biofilms, quorum sensing, formation and prevention. Discoveries, 7(3), e100. https://doi.org/10.15190/d.2019.13

Radzikowska-Büchner, E., Łopuszyńska, I., Flieger, W., Tobiasz, M., Maciejewski, R., & Flieger, J. (2023). An overview of recent developments in the management of burn injuries. International Journal of Molecular Sciences, 24(22), 16357. https://doi.org/10.3390/ijms242216357

Ramírez, D., & Caballero, J. (2018). Is it reliable to take the molecular docking top scoring position as the best solution without considering available structural data? Molecules, 23(5), 1038. https://doi.org/10.3390/molecules23051038

Reynolds, D., & Kollef, M. (2021). The epidemiology and pathogenesis and treatment of Pseudomonas aeruginosa infections: An update. Drugs, 81(18), 2117–2131. https://doi.org/10.1007/s40265-021-01635-6

Ruff, K. M., & Pappu, R. V. (2021). AlphaFold and implications for intrinsically disordered proteins. Journal of Molecular Biology, 433(20), 167208. http://dx.doi.org/10.1016/j.jmb.2021.167208

Sargsyan, K., Grauffel, C., & Lim, C. (2017). How Molecular Size Impacts RMSD Applications in Molecular Dynamics Simulations. Journal of Chemical Theory and Computation, 13(4), 1518–1524. https://doi.org/10.1021/acs.jctc.7b00028

Scheenstra, M. R., van den Belt, M., Tjeerdsma-van Bokhoven, J. L. M., Schneider, V. A. F., Ordonez, S. R., van Dijk, A., Veldhuizen, E. J. A., & Haagsman, H. P. (2019). Cathelicidins PMAP-36, LL-37 and CATH-2 are similar peptides with different modes of action. Scientific Reports, 9(1), 4780. https://doi.org/10.1038/s41598-019-41246-6

Scheenstra, M. R., van Harten, R. M., Veldhuizen, E. J. A., Haagsman, H. P., & Coorens, M. (2020). Cathelicidins Modulate TLR-Activation and Inflammation. Frontiers in Immunology, 11, 1137. https://doi.org/10.3389/fimmu.2020.01137

Schneider, V., Coorens, M., Ordonez, S. et al. Imaging the antimicrobial mechanism(s) of cathelicidin-2. Scientific Reports, 6, 32948 (2016). https://doi.org/10.1038/srep32948

Singer, A. J., & Boyce, S. T. (2017). Burn wound healing and tissue engineering. Journal of Burn Care & Research : Official Publication of the American Burn Association, 38(3), e605. https://doi.org/10.1097/BCR.0000000000000538

Sivakumar, K. C., Haixiao, J., Naman, C. B., & Sajeevan, T. P. (2020). Prospects of multitarget drug designing strategies by linking molecular docking and molecular dynamics to explore the protein–ligand recognition process. Drug Development Research, 81(6), 685–699. https://doi.org/10.1002/ddr.21673

Soedjana, H., Nadia, J., Sundoro, A., Hasibuan, L., Rubianti, I. W., Putri, A. C., & Harianti, S. (2020). The profile of severe burn injury patients with sepsis in Hasan Sadikin Bandung General Hospital. Annals of Burns and Fire Disasters, 33(4), 312. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7894849/

Tasleem, S., Siddiqui, A. I., Zuberi, M. A. W., Tariq, H., Abdullah, M., Hameed, A., Aijaz, A., Shah, H. H., Hussain, M. S., & Oduoye, M. O. (2024). Mortality patterns and risk factors in burn patients: A cross-sectional study from Pakistan. Burns Open, 8(1), 13–18. https://doi.org/10.1016/j.burnso.2023.11.003

Thakur, B., Arora, K., Gupta, A., & Guptasarma, P. (2020). Mechanism of bacterial adhesion and embedment in a DNA biofilm matrix: Evidence that binding of outer membrane lipopolysaccharide (LPS) to HU is key. bioRxiv. https://doi.org/10.1101/2020.10.20.346890

Van Harten, R. M., Van Woudenbergh, E., Van Dijk, A., & Haagsman, H. P. (2018). Cathelicidins: immunomodulatory antimicrobials. Vaccines, 6(3), 63. https://doi.org/10.3390/vaccines6030063

Varadi, M., Anyango, S., Deshpande, M., Nair, S., Natassia, C., Yordanova, G., Yuan, D., Stroe, O., Wood, G., Laydon, A., Žídek, A., Green, T., Tunyasuvunakool, K., Petersen, S., Jumper, J., Clancy, E., Green, R., Vora, A., Lutfi, M., ... Velankar, S. (2022). AlphaFold protein structure database: Massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Research, 50(D1), D439–D444. https://doi.org/10.1093/nar/gkab1061

Varela, M. F., Stephen, J., Lekshmi, M., Ojha, M., Wenzel, N., Sanford, L. M., Hernandez, A. J., Parvathi, A., & Kumar, S. H. (2021). Bacterial resistance to antimicrobial agents. Antibiotics, 10(5), 593. https://doi.org/10.3390/antibiotics10050593

Wardhana, A., Basuki, A., Prameswara, A. D. H., Rizkita, D. N., Andarie, A. A., & Canintika, A. F. (2017). The epidemiology of burns in Indonesia’s national referral burn center from 2013 to 2015. Burns Open, 1(2), 67–73. https://doi.org/10.1016/j.burnso.2017.08.002

World Health Organization. (2022). Global antimicrobial resistance and use surveillance system (GLASS) report: 2022. https://www.who.int/publications/i/item/9789240062702

World Health Organization. (2023). Burns. https://www.who.int/news-room/fact-sheets/detail/burns

Xiao, Q., Luo, Y., Shi, W., Lu, Y., Xiong, R., Wu, X., Huang, H., Zhao, C., Zeng, J., & Chen, C. (2022). The effects of LL-37 on virulence factors related to the quorum sensing system of Pseudomonas aeruginosa. Annals of Translational Medicine, 10(6). https://doi.org/10.21037/atm-22-617

Yacoub, H. A., Elazzazy, A. M., Mahmoud, M. M., Baeshen, M. N., Al-Maghrabi, O. A., Alkarim, S., Ahmed, E. S., Almehdar, H. A., & Uversky, V. N. (2016). Chicken cathelicidins as potent intrinsically disordered biocides with antimicrobial activity against infectious pathogens. Developmental & Comparative Immunology, 65, 8–24. https://doi.org/10.1016/j.dci.2016.06.012

Yasir, M., Willcox, M., & Dutta, D. (2018). Action of Antimicrobial Peptides against Bacterial Biofilms. Materials, 11(12), 2468. doi:10.3390/ma11122468

Żwierełło, W., Piorun, K., Skórka-Majewicz, M., Maruszewska, A., Antoniewski, J., & Gutowska, I. (2023). Burns: Classification, pathophysiology, and treatment: A review. International Journal of Molecular Sciences, 24(4), 3749. https://doi.org/10.3390/ijms24043749
Published
2025-09-30
How to Cite
Adhiwijaya, P., Kaitlyn, G., Valenthenardo, L., Anjani, P., & Bani, M. (2025). In Silico Evaluation of the Inhibition of Pseudomonas aeruginosa Biofilm Production in Burn Wound Infections Using CATH-2 and LL-37 Peptides. Indonesian Journal of Life Sciences, 7(02), 32-46. https://doi.org/https://doi.org/10.54250/ijls.v7i02.238
Section
Information Technology in Life Sciences