Downstream Critical Process Parameters for COVID-19 mRNA LNP Vaccine Production

  • Pradip Iramdhan Aliyansah Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia
  • Adelia Talita Oriana Athoulloh Kalyubi Institut Bio Scientia International Indonesia, Jakarta Indonesia
  • Azura Luna Widiyanto Institut Bio Scientia International Indonesia, Jakarta Indonesia
  • Ervin E Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia
  • Michelle Loavenia Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia
  • Stevanie Putri Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia
  • Tissa Yuan Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia
  • Pietradewi Hartrianti Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia
Keywords: mRNA vaccines, vaccines manufacturing, downstream processing, critical process parameters, lipid nanoparticles (LNPs)

Abstract

The COVID-19 pandemic, triggered by the SARS-CoV-2 virus, has led to global efforts to mitigate its effects, with mRNA vaccines playing a crucial role. These vaccines use the virus's genetic sequence to prompt an immune response without introducing the live pathogen, showcasing substantial efficacy in protective immunity. The production of mRNA vaccines involves complex stages, including critical downstream processes of purification and formulation, vital for ensuring the vaccine's purity, potency, and safety. The structural components of mRNA vaccines, such as the Open Reading Frame (ORF), untranslated regions (UTRs), cap structure, and poly(A) tail, along with the delivery system using lipid nanoparticles (LNPs), are essential for their functionality and efficacy. Optimization of these elements is crucial for enhancing vaccine performance. Conventional, self-amplifying, and trans-amplifying mRNA vaccines represent the different strategies employed to target COVID-19 effectively. Each type utilizes structural and delivery innovations to stimulate a robust immune response. The review underscores the significance of precise control in the manufacturing process, highlighting its role in global health security and the advancement of vaccine technology. By understanding and optimizing critical process parameters (CPPs) in the downstream manufacturing process, the pharmaceutical industry can achieve the highest standards in vaccine production, significantly contributing to the fight against the pandemic and future vaccine development, ensuring a swift, effective response to global health crises. This review paper focuses on the downstream stages of mRNA vaccine production, comparing studies on CPP to emphasize the importance of stringent control measures for vaccine quality, safety, and efficiency.

Downloads

Download data is not yet available.

Author Biographies

Pradip Iramdhan Aliyansah, Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia

Department of Pharmacy, Institut Bio Scientia International Indonesia

Adelia Talita Oriana Athoulloh Kalyubi, Institut Bio Scientia International Indonesia, Jakarta Indonesia

Department of Pharmacy, Institut Bio Scientia International Indonesia

Azura Luna Widiyanto, Institut Bio Scientia International Indonesia, Jakarta Indonesia

Department of Pharmacy, Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia

Ervin E, Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia

Department of Pharmacy, Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia

Michelle Loavenia, Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia

Department of Pharmacy, Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia

Stevanie Putri, Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia

Department of Pharmacy, Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia

Tissa Yuan, Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia

Department of Pharmacy, Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia

Pietradewi Hartrianti, Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia

Department of Pharmacy, Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia

References

Ahnert, V., Dhulesia, A., & Roper, S. (2021, September 15). COVID-19 Vaccine Manufacturing: Challenges, Solutions and Implications for the Pharma Industry | L.E.K. Consulting. Www.lek.com. https://www.lek.com/insights/ei/covid-19-vaccine-manufacturing-challenges-solutions-an d-implications-pharma-industry
Al Fayez, N., Nassar, M. S., Alshehri, A. A., Alnefaie, M. K., Almughem, F. A., Alshehri, B. Y., Alawad, A. O., & Tawfik, E. A. (2023). Recent Advancement in mRNA Vaccine Development and Applications. Pharmaceutics, 15(7), 1972. https://doi.org/10.3390/pharmaceutics15071972
Arik Makovitzki, Lerer, E., Yaron Kafri, Adar, Y., Cherry, L., Lupu, E., Arik Monash, Levy, R., Israeli, O., Dor, E., Epstein, E., Levin, L., Einat Toister, Idan Hefetz, Hazan, O., I. Hay Simon, Tal, A., Meni Girshengorn, Hanan Tzadok, & Rosen, O. (2021). Evaluation of a downstream process for the recovery and concentration of a Cell-Culture-Derived rVSV-Spike COVID-19 vaccine candidate. Vaccine, 39(48), 7044–7051. https://doi.org/10.1016/j.vaccine.2021.10.045
Ball, R. L., Bajaj, P., & Whitehead, K. A. (2017). Achieving long-term stability of lipid nanoparticles: examining the effect of pH, temperature, and lyophilization. International journal of nanomedicine, 305-315.rnase
Becette, O. B., Olenginski, L. T., & Dayie, T. K. (2019). Solid-Phase chemical synthesis of stable Isotope-Labeled RNA to aid structure and dynamics studies by NMR spectroscopy. Molecules, 24(19), 3476. https://doi.org/10.3390/molecules24193476
Blomeier, T., Fischbach, P., Koch, L., Andres, J., Miñambres, M., Beyer, H. M., & Zurbriggen, M. D. (2021). Blue Light‐Operated CRISPR/Cas13b‐Mediated mRNA Knockdown (Lockdown). Advanced Biology, 2000307. https://doi.org/10.1002/adbi.202000307
Bloom, K., van den Berg, F., & Arbuthnot, P. (2020). Self-amplifying RNA vaccines for infectious diseases. Gene Therapy. https://doi.org/10.1038/s41434-020-00204-y
Blue, J. T., Sinacola, J. R., & Bhambhani, A. (2015). Process scale-up and optimization of lyophilized vaccine products. In Lyophilized Biologics and Vaccines: Modality-Based Approaches (pp. 179-210). New York, NY: Springer New York.
Boggiano-Ayo, T., Palacios-Oliva, J., Sumlai Lozada-Chang, Relova-Hernández, E., Jose Alberto Gómez-Pérez, Oliva, G. A., Hernández, L., Alexi Bueno-Soler, De, D., Mora, O., Machado-Santisteban, R., Dayana Pérez-Martínez, Pérez-Massón, B., Yanelys Cabrera Infante, Calzadilla-Rosado, L., Ramírez, Y., Judey Aymed-García, Ruiz-Ramirez, I., Romero, Y., & Gómez, T. (2023). Development of a scalable single process for producing SARS-CoV-2 RBD monomer and dimer vaccine antigens. Frontiers in Bioengineering and Biotechnology, 11. https://doi.org/10.3389/fbioe.2023.1287551
Boo, S. H., & Kim, Y. K. (2020). The emerging role of RNA modifications in the regulation of mRNA stability. Experimental & Molecular Medicine, 52(3), 400–408. https://doi.org/10.1038/s12276-020-0407-z
Bown, C. P., & Bollyky, T. J. (2021). How COVID‐19 vaccine supply chains emerged in the midst of a pandemic. The World Economy, 45(2), 468–522. https://doi.org/10.1111/twec.13183
Brasil. (2001). Manual de procedimentos para vacinacao. Brasil. Ministerio Da Saude.
Brito, L. A., Kommareddy, S., Maione, D., Uematsu, Y., Giovani, C., Berlanda Scorza, F., Otten, G. R., Yu, D., Mandl, C. W., Mason, P. W., Dormitzer, P. R., Ulmer, J. B., & Geall, A. J. (2015). Self-Amplifying mRNA Vaccines. Nonviral Vectors for Gene Therapy - Physical Methods and Medical Translation, 179–233. https://doi.org/10.1016/bs.adgen.2014.10.005
Carapito, R., Bernardo, S. C., Pereira, M. M., Neves, M. C., Freire, M. G., & Sousa, F. (2023). Multimodal ionic liquid-based chromatographic supports for an effective RNA purification. Separation and Purification Technology, 315, 123676.
Cardoso, S., Sousa, F., Pessoa Filho, P. A., & R. Azzoni, A. (2022). Understanding the adsorption of plasmid DNA and RNA molecules onto arginine-agarose chromatographic resin. Molecular Biology Reports, 49(5), 3893-3901.
Centers for Disease Control and Prevention. (2021, September 1). Immunization: The Basics. Centers for Disease Control and Prevention. https://www.cdc.gov/vaccines/vac-gen/imz-basics.htm
Centers for Disease Control and Prevention. (2022, March 22). Coronavirus Disease 2019 (COVID-19) – Symptoms. Centers for Disease Control and Prevention; CDC. https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/symptoms.html
Centre for Disease Control and Prevention. (2023). Pfizer-BioNTech COVID-19 Vaccine Storage and Beyond-Use Date Tracking Labels. https://www.cdc.gov/vaccines/covid-19/info-by-product/pfizer/downloads/storage-handli ng-label.pdf

Chaudhary, N., Weissman, D., & Whitehead, K. A. (2021). mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nature Reviews Drug Discovery, 20(11). https://doi.org/10.1038/s41573-021-00283-5
Cheng, F., Wang, Y., Bai, Y., Liang, Z., Mao, Q., Liu, D., Desheng Dash Wu, & Xu, M. (2023). Research Advances on the Stability of mRNA Vaccines. Viruses, 15(3), 668–668. https://doi.org/10.3390/v15030668
Choi, H., Zhang, K., Dionysiou, D. D., Oerther, D. B., & Sorial, G. A. (2005). Effect of permeate flux and tangential flow on membrane fouling for wastewater treatment. Separation and Purification Technology, 45(1), 68-78.
Crommelin, D. J. A., Anchordoquy, T. J., Volkin, D. B., Jiskoot, W., & Mastrobattista, E. (2020). Addressing the Cold Reality of mRNA Vaccine Stability. Journal of Pharmaceutical Sciences, 110(3). https://doi.org/10.1016/j.xphs.2020.12.006
Currie, J., Dahlberg, J. R., Eriksson, J., Schweikart, F., Nilsson, G. A., & Örnskov, E. (2021). Stability indicating ion-pair reversed-phase liquid chromatography method for modified mRNA.
Daniel, S., Kis, Z., Kontoravdi, C., & Shah, N. (2022). Quality by Design for enabling RNA platform production processes. Trends in Biotechnology.
Decroly, E., Ferron, F., Lescar, J., & Canard, B. (2012). Conventional and unconventional mechanisms for capping viral mRNA. Nature Reviews Microbiology, 10(1), 51–65. https://doi.org/10.1038/nrmicro2675
Di, Z., Lin, J., Qiu, M., Liu, J., Zeng, X., & Li, X. (2023, January 20). Purification of SARS-CoV-2 RBD in Affinity Chromatography Using a Novel Nanobody Ligand. Www.researchsquare.com. https://www.researchsquare.com/article/rs-2421278/v1
Fabbri, L., Chakraborty, A., Robert, C., & Vagner, S. (2021). The plasticity of mRNA translation during cancer progression and therapy resistance. Nature Reviews Cancer, 21(9), 558–577. https://doi.org/10.1038/s41568-021-00380-y
Fahrni, M. L., Ismail, I. A., Refi, D. M., Almeman, A., Yaakob, N. C., Saman, K. M., Mansor, N. F., Noordin, N., & Babar, Z. (2022). Management of COVID-19 vaccines cold chain logistics: a scoping review. Journal of Pharmaceutical Policy and Practice, 15(1). https://doi.org/10.1186/s40545-022-00411-5
Fallas, M. M., Tanaka, N., Buckenmaier, S. M., & McCalley, D. V. (2013). Influence of phase type and solute structure on changes in retention with pressure in reversed-phase high performance liquid chromatography. Journal of Chromatography A, 1297, 37-45.
Fang, E., Liu, X., Li, M., Zhang, Z., Song, L., Zhu, B., Wu, X., Liu, J., Zhao, D., & Li, Y. (2022). Advances in COVID-19 mRNA vaccine development. Signal Transduction and Targeted Therapy, 7(94), 94. https://doi.org/10.1038/s41392-022-00950-y
Farris, E., Brown, D. M., Ramer-Tait, A. E., & Pannier, A. K. (2016). Micro- and nanoparticulates for DNA vaccine delivery. Experimental Biology and Medicine, 241(9), 919–929. https://doi.org/10.1177/1535370216643771
Fekete, S., Yang, H., Wyndham, K., & Lauber, M. (2022). Salt gradient and ion-pair mediated anion exchange of intact messenger ribonucleic acids. Journal of Chromatography Open, 2, 100031.
Ghaemmaghamian, Z., Zarghami, R., Walker, G., O’Reilly, E., & Ziaee, A. (2022). Stabilizing vaccines via drying: Quality by design considerations. Advanced Drug Delivery Reviews, 187, 114313.
Gote, V., Bolla, P. K., Kommineni, N., Butreddy, A., Nukala, P. K., Palakurthi, S. S., & Khan, W. (2023). A comprehensive review of mRNA vaccines. International Journal of Molecular Sciences, 24(3), 2700. https://doi.org/10.3390/ijms24032700
Harris, M. E., & Christian, E. L. (2009). RNA Crosslinking Methods. Methods in Enzymology, 468, 127–146. https://doi.org/10.1016/S0076-6879(09)68007-1
Hasson, S. S. A. A., Al-Busaidi, J. K. Z., & Sallam, T. A. (2015). The past, current and future trends in DNA vaccine immunisations. Asian Pacific Journal of Tropical Biomedicine, 5(5), 344–353. https://doi.org/10.1016/s2221-1691(15)30366-x
Hinnebusch, A. G., Ivanov, I. P., & Sonenberg, N. (2016). Translational control by 5’-untranslated regions of eukaryotic mRNAs. Science (New York, N.Y.), 352(6292), 1413–1416. https://doi.org/10.1126/science.aad9868
Hollams, E. M., Giles, K. M., Thomson, A. M., & Leedman, P. J. (2002). MRNA stability and the control of gene expression: implications for human disease. Neurochemical Research, 27(10), 957–980. https://doi.org/10.1023/a:1020992418511
Hong, P., Koza, S., & Bouvier, E. S. (2012). A review size-exclusion chromatography for the analysis of protein biotherapeutics and their aggregates. Journal of liquid chromatography & related technologies, 35(20), 2923-2950.
Hou, X., Zaks, T., Langer, R., & Dong, Y. (2021). Lipid nanoparticles for mRNA delivery. Nature Reviews Materials, 6(12), 1078–1094. https://doi.org/10.1038/s41578-021-00358-0
Huch, S., & Nissan, T. (2014). Interrelations between translation and general mRNA degradation in yeast. Wiley Interdisciplinary Reviews: RNA, 5(6), 747–763. https://doi.org/10.1002/wrna.1244
Huter, M. J., & Strube, J. (2019). Model-based design and process optimization of continuous single pass tangential flow filtration focusing on continuous bioprocessing. Processes, 7(6), 317.
Jackson, N. A. C., Kester, K. E., Casimiro, D., Gurunathan, S., & DeRosa, F. (2020). The promise of mRNA vaccines: a biotech and industrial perspective. Npj Vaccines, 5(1), 1–6. https://doi.org/10.1038/s41541-020-0159-8
Jalkanen, A. L., Coleman, S. J., & Wilusz, J. (2014). Determinants and implications of mRNA poly(A) tail size – Does this protein make my tail look big? Seminars in Cell & Developmental Biology, 34, 24–32. https://doi.org/10.1016/j.semcdb.2014.05.018
Jaquet, V., Wallerich, S., Voegeli, S., Demeter Túrós, Eduardo Calero Viloria, & Attila Becskei. (2022). Determinants of the temperature adaptation of mRNA degradation. Nucleic Acids Research, 50(2), 1092–1110. https://doi.org/10.1093/nar/gkab1261
Järvinen, P., Mikko Oivanen, & Harri Lönnberg. (1991). Interconversion and phosphoester hydrolysis of 2’,5’- and 3’,5’-dinucleoside monophosphates: kinetics and mechanisms. Journal of Organic Chemistry, 56(18), 5396–5401. https://doi.org/10.1021/jo00018a037
Kang, D. D., Li, H., & Dong, Y. (2023). Advancements of in vitro transcribed mRNA (IVT mRNA) to enable translation into the clinics. Advanced Drug Delivery Reviews, 199, 114961–114961. https://doi.org/10.1016/j.addr.2023.114961
Kim, S. C., Sekhon, S. S., Shin, W.-R., Ahn, G., Cho, B.-K., Ahn, J.-Y., & Kim, Y.-H. (2021). Modifications of mRNA Vaccine Structural Elements for Improving mRNA Stability and Translation Efficiency. Molecular & Cellular Toxicology, 18(1), 1–8. https://doi.org/10.1007/s13273-021-00171-4
Kis, Z., Kontoravdi, C., Shattock, R., & Shah, N. (2020). Resources, Production Scales and Time Required for Producing RNA Vaccines for the Global Pandemic Demand. Vaccines, 9(1), 3. https://doi.org/10.3390/vaccines9010003
Labouta, H. I., Langer, R., Cullis, P. R., Merkel, O. M., Prausnitz, M. R., Gomaa, Y., Nogueira, S. S., & Kumeria, T. (2022). Role of drug delivery technologies in the success of COVID-19 vaccines: a perspective. Drug Delivery and Translational Research, 12(11), 2581–2588. https://doi.org/10.1007/s13346-022-01146-1
Langer, B., Renner, M., Scherer, J., Schüle, S., & Cichutek, K. (2012). Safety Assessment of Biolistic DNA Vaccination. Biolistic DNA Delivery, 371–388. https://doi.org/10.1007/978-1-62703-110-3_27
Ledesma-Feliciano, C., Chapman, R., Hooper, J. W., Elma, K., Zehrung, D., Brennan, M. B., & Spiegel, E. K. (2023). Improved DNA Vaccine Delivery with Needle-Free Injection Systems. Vaccines, 11(2), 280. https://doi.org/10.3390/vaccines11020280
Lee, J., Liu, Z., Chen, W.-H., Wei, J., Kundu, R., Adhikari, R., Rivera, J. A., Gillespie, P. M., Strych, U., Zhan, B., Hotez, P. J., & Bottazzi, M. E. (2021). Process development and scale-up optimization of the SARS-CoV-2 receptor binding domain–based vaccine candidate, RBD219-N1C1. Applied Microbiology and Biotechnology, 105(10), 4153–4165. https://doi.org/10.1007/s00253-021-11281-3
Lerer, E., Oren, Z., Kafri, Y., Adar, Y., Toister, E., Cherry, L., Lupu, E., Monash, A., Levy, R., Dor, E., Epstein, E., Levin, L., Girshengorn, M., Natan, N., Zichel, R., & Makovitzki, A. (2021). Highly Efficient Purification of Recombinant VSV-∆G-Spike Vaccine against SARS-CoV-2 by Flow-Through Chromatography. BioTech, 10(4), 22. https://doi.org/10.3390/biotech10040022
Liang, F., Lindgren, G., Lin, A., Thompson, E. A., Ols, S., Röhss, J., John, S., Hassett, K., Yuzhakov, O., Bahl, K., Brito, L. A., Salter, H., Ciaramella, G., & Loré, K. (2017). Efficient Targeting and Activation of Antigen-Presenting Cells In Vivo after Modified mRNA Vaccine Administration in Rhesus Macaques. Molecular Therapy, 25(12), 2635–2647. https://doi.org/10.1016/j.ymthe.2017.08.006
Liu, T., Liang, Y., & Huang, L. (2021). Development and Delivery Systems of mRNA Vaccines. Frontiers in Bioengineering and Biotechnology, 9(718753). https://doi.org/10.3389/fbioe.2021.718753
Liu, T., Tian, Y., Zheng, A., & Cui, C. (2022). Design strategies for and stability of mRNA–Lipid Nanoparticle COVID-19 vaccines. Polymers, 14(19), 4195. https://doi.org/10.3390/polym14194195
Louden, E. M. (2022). Scaling Up the Global COVID-19 Vaccination Program: Production, Allocation, and Distribution with an Emphasis on Equity. The Yale Journal of Biology and Medicine, 95(3), 379–387. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9511941.
Madsen, E., Kaiser, J., Krühne, U., & Pinelo, M. (2022). Single pass tangential flow filtration: Critical operational variables, fouling, and main current applications. Separation and Purification Technology, 291, 120949.
Makarov, A. A., Regalado, E. L., Welch, C. J., & Schafer, W. A. (2014). Effect of pressure on the chromatographic separation of enantiomers under reversed-phase conditions. Journal of Chromatography A, 1352, 87-92
Mashima, R., & Takada, S. (2022). Lipid Nanoparticles: A Novel Gene Delivery Technique for Clinical Application. Current Issues in Molecular Biology, 44(10), 5013–5027. https://doi.org/10.3390/cimb44100341
Matoulkova, E., Michalova, E., Vojtesek, B., & Hrstka, R. (2012). The role of the 3’ untranslated region in post-transcriptional regulation of protein expression in mammalian cells. RNA Biology, 9(5), 563–576. https://doi.org/10.4161/rna.20231
Messerian, K. O., Zverev, A., Kramarczyk, J. F., & Zydney, A. L. (2022). Pressure‐dependent fouling behavior during sterile filtration of mRNA‐containing lipid nanoparticles. Biotechnology and bioengineering, 119(11), 3221-3229.
Messmore, J. M., Fuchs, D. N., & Raines, R. T. (1995). Ribonuclease A: Revealing Structure-Function Relationships with Semisynthesis. Journal of the American Chemical Society, 117(31), 8057–8060. https://doi.org/10.1021/ja00136a001
Mirtaleb, M. S., Falak, R., Heshmatnia, J., Bakhshandeh, B., Taheri, R. A., Soleimanjahi, H., & Zolfaghari Emameh, R. (2023). An insight overview on COVID-19 mRNA vaccines: Advantageous, pharmacology, mechanism of action, and prospective considerations. International Immunopharmacology, 117(109934), 109934. https://doi.org/10.1016/j.intimp.2023.109934
Mittal, A., Manjunath, K., Ranjan, R. K., Kaushik, S., Kumar, S., & Verma, V. (2020). COVID-19 pandemic: Insights into structure, function, and hACE2 Receptor Recognition by SARS-CoV-2. PLOS Pathogens, 16(8), e1008762. https://doi.org/10.1371/journal.ppat.1008762
Mondal, J., Revuri, V., Hasan, M. N., & Lee, Y. (2021, January 1). Chapter EIGHT - Bio inspired materials for nonviral vaccine delivery (M. Nurunnabi, Ed.). ScienceDirect; Woodhead Publishing. https://www.sciencedirect.com/science/article/abs/pii/B9780128213520000058
Nafian, F., Nafian, S., Soleymani, G., Pourmanouchehri, Z., Kiyanjam, M., Jalaei, S. B., Jeyroudi, H., & Mohammdi, S. M. (2021). Perspective Chapter: Next-Generation Vaccines Based on Self-Amplifying RNA. In www.intechopen.com. IntechOpen. https://www.intechopen.com/chapters/79667
National Institute of Allergy and Infectious Diseases. (2019). Vaccine Types | NIH: National Institute of Allergy and Infectious Diseases. Nih.gov. https://www.niaid.nih.gov/research/vaccine-types
Niazi, S. K. (2022). Making COVID-19 mRNA vaccines accessible: challenges resolved. Expert Review of Vaccines, 21(9), 1163–1176. https://doi.org/10.1080/14760584.2022.2089121
Nouri, N., Talebi, M., & Ali, P. A. (2012). Viral and nonviral delivery systems for gene delivery. Advanced Biomedical Research, 1(1), 27. https://doi.org/10.4103/2277-9175.98152
Orlandini von Niessen, A. G., Poleganov, M. A., Rechner, C., Plaschke, A., Kranz, L. M., Fesser, S., Diken, M., Löwer, M., Vallazza, B., Beissert, T., Bukur, V., Kuhn, A. N., Türeci, Ö., & Sahin, U. (2019). Improving mRNA-Based Therapeutic Gene Delivery by Expression-Augmenting 3′ UTRs Identified by Cellular Library Screening. Molecular Therapy, 27(4), 824–836. https://doi.org/10.1016/j.ymthe.2018.12.011
Pardi, N., Hogan, M. J., Porter, F., & Weissman, D. (2018). mRNA vaccines — a new era in vaccinology. Nature Reviews Drug Discovery, 17(4), 261–279. https://doi.org/10.1038/nrd.2017.243
Park, J. W., Lagniton, P. N. P., Liu, Y., & Xu, R.-H. (2021). mRNA vaccines for COVID-19: what, why and how. International Journal of Biological Sciences, 17(6), 1446–1460. https://doi.org/10.7150/ijbs.59233
Park, K. S., Sun, X., Aikins, M., & Moon, J. J. (2021). Non-viral COVID-19 vaccine delivery systems. Advanced Drug Delivery Reviews, 169, 137–151. https://doi.org/10.1016/j.addr.2020.12.008
Putri, S. (2022). Jakarta’s COVID-19 Response Team. Jakarta’s COVID-19 Response Team. https://corona.jakarta.go.id/en/artikel/varian-varian-covid-19-apa-perbedaannya
Qin, S., Tang, X., Chen, Y., Chen, K., Fan, N., Xiao, W., Zheng, Q., Li, G., Teng, Y., Wu, M., & Song, X. (2022). mRNA-based therapeutics: powerful and versatile tools to combat diseases. Signal Transduction and Targeted Therapy, 7(1), 1–35. https://doi.org/10.1038/s41392-022-01007-w
Ramachandran, S., Satapathy, S. R., & Dutta, T. (2022). Delivery strategies for mRNA vaccines. Pharmaceutical medicine, 36(1), 11-20.
Ren, D. B., Yang, Z. H., Liang, Y. Z., Fan, W., & Ding, Q. (2013). Effects of injection volume on chromatographic features and resolution in the process of counter-current chromatography. Journal of Chromatography A, 1277, 7-14.
Rosa, S., Prazeres, D., Azevedo, A. M., & Marques, M. P. C. (2021). mRNA vaccines manufacturing: Challenges and bottlenecks. Vaccine, 39(16), 2190–2200. https://doi.org/10.1016/j.vaccine.2021.03.038
Ryczek, M., Pluta, M., Błaszczyk, L., & Kiliszek, A. (2022). Overview of methods for Large-Scale RNA synthesis. Applied Sciences, 12(3), 1543. https://doi.org/10.3390/app12031543
Schlake, T., Thess, A., Fotin-Mleczek, M., & Kallen, K.-J. (2012). Developing mRNA-vaccine technologies. RNA Biology, 9(11), 1319–1330. https://doi.org/10.4161/rna.22269
Schmidt, C., & Schnierle, B. S. (2023). Self-Amplifying RNA Vaccine Candidates: Alternative Platforms for mRNA Vaccine Development. Pathogens, 12(1), 138. https://doi.org/10.3390/pathogens12010138
Schoenmaker, L., Witzigmann, D., Kulkarni, J. A., Verbeke, R., Kersten, G., Jiskoot, W., & Crommelin, D. (2021). mRNA-lipid nanoparticle COVID-19 vaccines: structure and stability. International Journal of Pharmaceutics, 601(120586), 120586. https://doi.org/10.1016/j.ijpharm.2021.120586
Strack, R. (2020). Controlling mRNA localization with light. Nature Methods, 17(4), 362–362. https://doi.org/10.1038/s41592-020-0804-1
Suzana, D., Melina, C., Endrasti, G. A., Ninia, K. E., & Qothoni, W. B. (2022). Mekanisme Kerja Vaksin mRNA Untuk Meningkatkan Imunitas Tubuh Terhadap Virus SARS-CoV-2. Jurnal Kewarganegaraan, 6(2), 4114–4130.
Szabó, G., Mahiny, A. J., & Vlatkovic, I. (2022). COVID-19 mRNA vaccines: Platforms and current developments. Molecular Therapy, 30(5), 1850–1868. https://doi.org/10.1016/j.ymthe.2022.02.016
Taha, B. A., Al-Jubouri, Q., Al Mashhadany, Y., Hafiz Mokhtar, M. H., Bin Zan, M. S. D., Bakar, A. A. A., & Arsad, N. (2023). Density estimation of SARS-CoV2 spike proteins using super pixels segmentation technique. Applied Soft Computing, 138, 110210. https://doi.org/10.1016/j.asoc.2023.110210
Tanaka, M., & Chock, P. B. (2021). Oxidative Modifications of RNA and Its Potential Roles in Biosystem. Frontiers in Molecular Biosciences, 8. https://doi.org/10.3389/fmolb.2021.685331
Uddin, M. N., & Roni, M. A. (2021). Challenges of Storage and Stability of mRNA-Based COVID-19 Vaccines. Vaccines, 9(9), 1033. https://doi.org/10.3390/vaccines9091033
UNICEF. (2020). Frequently Asked Questions about coronavirus disease (COVID-19). Www.unicef.org. https://www.unicef.org/indonesia/coronavirus/FAQ
Van Damme, R., Li, K., Zhang, M., Bai, J., Lee, W. H., Yesselman, J. D., Lu, Z., & Velema, W. A. (2022). Chemical reversible crosslinking enables measurement of RNA 3D distances and alternative conformations in cells. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-28602-3
Vincent, H. A., & Deutscher, M. P. (2009). Insights into How RNase R Degrades Structured RNA: Analysis of the Nuclease Domain. Journal of Molecular Biology, 387(3), 570–583. https://doi.org/10.1016/j.jmb.2009.01.068
Wadhwa, A., Aljabbari, A., Lokras, A., Foged, C., & Thakur, A. (2020). Opportunities and Challenges in the Delivery of mRNA-Based Vaccines. Pharmaceutics, 12(2). https://doi.org/10.3390/pharmaceutics12020102
Wang, H., Zhang, Y., Huang, B., Deng, W., Quan, Y., Wang, W., Xu, W., Zhao, Y., Li, N., Zhang,
J., Liang, H., Bao, L., Xu, Y., Ding, L., Zhou, W., Gao, H., Liu, J., Niu, P., Zhao, L., & Zhen, W. (2020). Development of an inactivated vaccine candidate, BBIBP-CorV, with potent protection against SARS-CoV-2. Cell, 0(0). https://doi.org/10.1016/j.cell.2020.06.008
Warmiński, M., Mamot, A., Depaix, A., Kowalska, J., & Jemielity, J. (2023). Chemical Modifications of mRNA Ends for Therapeutic Applications. Accounts of Chemical Research, 56(20), 2814–2826. https://doi.org/10.1021/acs.accounts.3c00442
Wayment-Steele, H. K., Kim, D. S., Choe, C. A., Nicol, J. J., Wellington-Oguri, R., Sperberg, R. A. P., Huang, P.-S., & Das, R. (2020). Theoretical basis for stabilizing messenger RNA through secondary structure design. BioRxiv : The Preprint Server for Biology. https://doi.org/10.1101/2020.08.22.262931
Wei, H., Rong, Z., Liu, L., Sang, Y., Yang, J., & Wang, S. (2023). Streamlined and on-demand preparation of mRNA products on a universal integrated platform. Microsystems & Nanoengineering, 9(1). https://doi.org/10.1038/s41378-023-00538-8
Wilson, B., & Geetha, K. (2022). Lipid nanoparticles in the development of mRNA vaccines for COVID-19. Journal of Drug Delivery Science and Technology, 74, 103553. https://doi.org/10.1016/j.jddst.2022.103553
World Health Organization. (2021). Coronavirus disease (COVID-19). World Health Organization. https://www.who.int/health-topics/coronavirus#tab=tab_1
World Health Organization. (2023). WHO’s Science Council issues report on mRNA vaccine technology. https://www.who.int/news/item/13-12-2023-who-s-science-council-issues-report-on-mrna-vaccine-technology#:~:text=However%2C%20the%20benefits%20of%20the
Yousif, E., & Haddad, R. (2013). Photodegradation and photostabilization of polymers, especially polystyrene: review. SpringerPlus, 2(1). https://doi.org/10.1186/2193-1801-2-398
Yu, L. X. (2008). Pharmaceutical quality by design: product and process development, understanding, and control. Pharmaceutical research, 25, 781-791.
Zeng, C., Zhang, C., Walker, P. G., & Dong, Y. (2020). Formulation and Delivery Technologies for mRNA Vaccines. Current Topics in Microbiology and Immunology. https://doi.org/10.1007/82_2020_217
Zhang, J., Liu, Y., Li, C., Qin, X., Zhang, D., Yang, C., Rosenecker, J., Ding, X., & Guan, S. (2023). Recent advances and innovations in the preparation and purification of in Vitro-Transcribed-mRNA-Based molecules. Pharmaceutics, 15(9), 2182. https://doi.org/10.3390/pharmaceutics15092182
Zhang, N.-N., Li, X.-F., Deng, Y.-Q., Zhao, H., Huang, Y.-J., Yang, G., Huang, W.-J., Gao, P., Zhou, C., Zhang, R.-R., Guo, Y., Sun, S.-H., Fan, H., Zu, S.-L., Chen, Q., He, Q., Cao, T.-S., Huang, X.-Y., Qiu, H.-Y., & Nie, J.-H. (2020). A Thermostable mRNA Vaccine against COVID-19. Cell, 182(5), 1271-1283.e16. https://doi.org/10.1016/j.cell.2020.07.024
Zhang, W., Jiang, Y., He, Y., Boucetta, H., Wu, J., Chen, Z., & He, W. (2022). Lipid carriers for mRNA delivery. Acta Pharmaceutica Sinica B. https://doi.org/10.1016/j.apsb.2022.11.026
Published
2024-03-31
How to Cite
Aliyansah, P. I., Kalyubi, A., Widiyanto, A., E, E., Loavenia, M., Putri, S., Yuan, T., & Hartrianti, P. (2024). Downstream Critical Process Parameters for COVID-19 mRNA LNP Vaccine Production. Indonesian Journal of Life Sciences, 6(01), 46-67. https://doi.org/https://doi.org/10.54250/ijls.v6i01.205
Section
Bio-product and Services for Sustainable Society