Prediction Methods of the Protein Subcellular Localization: A Systematic Reviews

  • Arli Aditya Parikesit Indonesia International Institute for Life Sciences
  • Gabriella Patricia Indonesia International Institute for Life Sciences
  • Nanda Risqia Pradana Ratnasari Indonesia International Institute for Life Sciences
Keywords: Protein sub cellular localization, bioinformatics, gene ontology, machine learning algorithm

Abstract

The prediction of protein subcellular localization (SCL) has been a long-running challenge in bioinformatics. Protein SCL is crucial for a protein to exercise its functions properly. The reliance of protein localization on signaling peptides and the information available in gene ontology (GO) databases makes it possible to use computational approaches to predict protein SCL. SCL methods can be classified as either sequence-based or annotation-based. Machine learning algorithms and classifiers are used in protein SCL prediction tools. This review presents a list of protein SCL predictors published in the last 5 years.

Downloads

Download data is not yet available.

Author Biographies

Arli Aditya Parikesit, Indonesia International Institute for Life Sciences

Indonesia International Institute for Life Sciences

Gabriella Patricia, Indonesia International Institute for Life Sciences

Indonesia International Institute for Life Sciences

Nanda Risqia Pradana Ratnasari, Indonesia International Institute for Life Sciences

Indonesia International Institute for Life Sciences

References

Almagro Armenteros, J. J., Sønderby, C. K., Sønderby, S. K., Nielsen, H., & Winther, O. (2017). DeepLoc: prediction of protein subcellular localization using deep learning. Bioinformatics, 33(21), 3387–3395. doi:10.1093/bioinformatics/btx431

Cheng, X., Xiao, X., & Chou, K.-C. (2017). pLoc-mHum: predict subcellular localization of multi-location human proteins via general PseAAC to winnow out the crucial GO information. Bioinformatics, 34(9), 1448–1456. doi:10.1093/bioinformatics/btx711

Cheng, X., Xiao, X., & Chou, K.-C. (2017). pLoc-mPlant: predict subcellular localization of multi-location plant proteins by incorporating the optimal GO information into general PseAAC. Molecular BioSystems, 13(9), 1722–1727. doi:10.1039/c7mb00267j

Chou, K.C. and Shen, H.B. (2006) Predicting eukaryotic protein subcellular location by fusing optimized evidence-theoretic K-nearest neighbor classifiers. J. Proteome Res., 5, 1888–1897.

Dönnes, P., & Höglund, A. (2004). Predicting protein subcellular localization: past, present, and future. Genomics, proteomics & bioinformatics, 2(4), 209–215. doi:10.1016/s1672-0229(04)02027-3

Du, P., Wang, X., Xu, C., & Gao, Y. (2012). PseAAC-Builder: A cross-platform stand-alone program for generating various special Chou’s pseudo-amino acid compositions. Analytical Biochemistry, 425(2), 117–119. doi:10.1016/j.ab.2012.03.015

Kaushik, S., Chouhan, U., & Dwivedi, A. (2017). Study of Protein Subcellular Localization Prediction: A Review. International Journal of Life Science & Pharma Research Vol:7/Issue:3 ISSN 2250-0480.
https://pdfs.semanticscholar.org/5217/579f89dab1832617dbc11b75246bcfbe4b00.pdf

Mirzaei Mehrabad, E., Hassanzadeh, R., & Eslahchi, C. (2018). PMLPR: A novel method for predicting subcellular localization based on recommender systems. Scientific reports, 8(1), 12006. doi:10.1038/s41598-018-30394-w

Qi, T., Qiu, T., Zhang, Q., Tang, K., Fan, Y., Qiu, J., … Cao, Z. (2014). SEPPA 2.0--more refined server to predict spatial epitope considering species of immune host and subcellular localization of protein antigen. Nucleic acids research, 42(Web Server issue), W59–W63. doi:10.1093/nar/gku395

Su, E., Chiu, H.-S., Lo, A., Hwang, J.-K., Sung, T.-Y., & Hsu, W.-L. (2007). Protein subcellular localization prediction based on compartment-specific features and structure conservation. BMC Bioinformatics, 8(1), 330. doi:10.1186/1471-2105-8-330

Thakur, A., Rajput, A., & Kumar, M. (2016). MSLVP: prediction of multiple subcellular localization of viral proteins using a support vector machine. Molecular BioSystems, 12(8), 2572–2586. doi:10.1039/c6mb00241b

Wan, S., Mak, M. W., & Kung, S. Y. (2014). HybridGO-Loc: mining hybrid features on gene ontology for predicting subcellular localization of multi-location proteins. PloS one, 9(3), e89545. doi:10.1371/journal.pone.0089545

Wan, S., Mak, M.-W., & Kung, S.-Y. (2015). mPLR-Loc: An adaptive decision multi-label classifier based on penalized logistic regression for protein subcellular localization prediction. Analytical Biochemistry, 473, 14–27. doi:10.1016/j.ab.2014.10.014

Zhou, H., Yang, Y., & Shen, H.-B. (2016). Hum-mPLoc 3.0: prediction enhancement of human protein subcellular localization through modeling the hidden correlations of gene ontology and functional domain features. Bioinformatics, btw723. doi:10.1093/bioinformatics/btw723
Published
2019-09-30
How to Cite
Parikesit, A., Patricia, G., & Ratnasari, N. (2019). Prediction Methods of the Protein Subcellular Localization: A Systematic Reviews. Indonesian Journal of Life Sciences, 1(2), 37-41. https://doi.org/https://doi.org/10.54250/ijls.v1i2.20
Section
Articles