CRISPR-Cas9: A Story of Discovery, Innovation, and Revolution in Genome Editing
Abstract
CRISPR-Cas9 is a powerful and flexible genome editing technology that has transformed the field of life sciences. It enables the creation and modification of genomic sequences of various organisms, with wide-ranging implications for biotechnology, agriculture, and medical research. The origin of CRISPR as an adaptive immune system in bacteria, the elucidation of CRISPR-Cas9 biological and molecular mechanisms, and the subsequent engineering and optimization of it as a programmable genome editing tool are remarkable achievements in science. In this review, we will summarize this fascinating history and also explore the recent innovations of the CRISPR-Cas9 system, which extend the genomic tool box to improve the accuracy and efficiency of genome editing.
Downloads
References
Anzalone AV, et al. (2019) Search-and-replace genome editing without double-strand breaks or donor DNA. Nature.
Arslan, Z. et al. (2014) ‘Detection and characterization of spacer integration intermediates in type I-E CRISPR – Cas system’, Nucleic Acids Research, 42(12), pp. 7884–7893. doi: 10.1093/nar/gku510.
Barrangou, R. et al. (2007) ‘CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes’, Science, 315(March), pp. 1709–1712. doi: 10.1126/science.1138140.
Bothmer, A. et al. (2017) ‘Characterization of the interplay between DNA repair and CRISPR/Cas9-induced DNA lesions at an endogenous locus’, Nature Communications. Nature Publishing Group, 8(May 2016), pp. 1–12. doi: 10.1038/ncomms13905.
Briner, A. E. et al. (2014) ‘Guide RNA functional modules direct Cas9 activity and orthogonality’, Molecular Cell. Elsevier Inc., 56(2), pp. 333–339. doi: 10.1016/j.molcel.2014.09.019.
Brinkman, E. K. et al. (2018) ‘Kinetics and Fidelity of the Repair of Cas9-Induced Double-Strand DNA Breaks’, Molecular Cell. Elsevier Inc., 70(5), pp. 801-813.e6. doi: 10.1016/j.molcel.2018.04.016.
Casini, A. et al. (2018) ‘A highly specific SpCas9 variant is identified by in vivo screening in yeast’, Nature Biotechnology. Nature Publishing Group, 36(3), pp. 265-271 7. doi: 10.1038/nbt.4066.
Castro, G., N. et al. (2021) Comparison of the Feasibility, Efficiency, and Safety of Genome Editing Technologies. Int. J. Mol. Sci. 22, 10355. https://doi.org/10.3390/ijms221910355
Charpentier, M. et al. (2018) ‘CtIP fusion to Cas9 enhances transgene integration by homology-dependent repair’, Nature Communications. Springer US, 9(1), pp. 1–11. doi: 10.1038/s41467-018-03475-7.
Chatterjee, P., Jakimo, N. and Jacobson, J. M. (2018) ‘Minimal PAM specificity of a highly similar SpCas9 ortholog’, Science Advances, 4(10), pp. 1–11. doi: 10.1126/sciadv.aau0766.
Chen, B. et al. (2013) ‘Resource Dynamic Imaging of Genomic Loci in Living Human Cells by an Optimized CRISPR / Cas System’, Cell. Elsevier, 155(7), pp. 1479–1491. doi: 10.1016/j.cell.2013.12.001.
Chen, J. S. et al. (2017) ‘Enhanced Proofreeding Governs CRISPR-Cas9 Targeting Accuracy’, Nature. Nature Publishing Group, 550(7676), pp. 407–410. doi: 10.1038/nature24268.
Chen, J. S. et al. (2017) ‘Enhanced Proofreeding Governs CRISPR-Cas9 Targeting Accuracy’, Nature. Nature Publishing Group, 550(7676), pp. 407–410. doi: 10.1038/nature24268.
Chen, P.J., Liu, D.R. Prime editing for precise and highly versatile genome manipulation. Nat Rev Genet 24, 161–177 (2023). https://doi.org/10.1038/s41576-022-00541-1
Chylinski, K., Le Rhun, A. and Charpentier, E. (2013) ‘The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems’, RNA Biology, 10(5), pp. 726–737. doi: 10.4161/rna.24321.
Chylinski, K., Le Rhun, A. and Charpentier, E. (2013) ‘The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems’, RNA Biology, 10(5), pp. 726–737. doi: 10.4161/rna.24321.
Cong, L. et al. (2013) ‘Multiplex Genome Engineering Using CRISPR/Cas9 Systems’, Science, 339(February), pp. 819–824.
Cox, D. B. T. et al. (2017) RNA editing with CRISPR–Cas13. Science 358, 1019–1027
Dagdas, Y. S. et al. (2017) ‘A conformational checkpoint between DNA binding and cleavage by CRISPR-Cas9’, Science Advances, 3(8), pp. 1–9. doi: 10.1126/sciadv.aao0027.
Datsenko, K. A. et al. (2012) ‘Molecular memory of prior infections activates the CRISPR / Cas adaptive bacterial immunity system’, Nature Communications. Nature Publishing Group, (May). doi: 10.1038/ncomms1937.
Deltcheva, E. et al. (2011) ‘CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III’, Nature, 471(7340), pp. 602–607. doi: 10.1038/nature09886.
Deltcheva, E. et al. (2011) ‘CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III’, Nature, 471(7340), pp. 602–607. doi: 10.1038/nature09886.
Deveau, H. et al. (2008) ‘Phage response to CRISPR-encoded resistance in Streptococcus thermophilus’, Journal of Bacteriology, 190(4), pp. 1390–1400. doi: 10.1128/JB.01412-07.
Dianov, G. L. and Hu, U. (2013) ‘Mammalian Base Excision Repair: the Forgotten Archangel’, Nucleic Acids Research, 41(6), pp. 3483–3490. doi: 10.1093/nar/gkt076.
Doudna, J. A., Wright, A. V and Nun, J. K. (2016) ‘Biology and Applications of CRISPR Systems: Harnessing Nature ’ s Toolbox for Genome Engineering’, Cell, 164, pp. 29–44. doi: 10.1016/j.cell.2015.12.035.
Garneau, J. E. et al. (2010) ‘The CRISPR/cas bacterial immune system cleaves bacteriophage and plasmid DNA’, Nature, 468(7320), pp. 67–71. doi: 10.1038/nature09523.
Gasiunas, G. et al. (2012) ‘Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria’, Proceedings of the National Academy of Sciences of the United States of America, 109(39), pp. 2579–2586. doi: 10.1073/pnas.1208507109.
Gaudelli, N. M. et al. (2017) Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551, 464–471.
Gilbert, L. A. et al. (2012) ‘Resource CRISPR-Mediated Modular RNA-Guided Regulation of Transcription in Eukaryotes’, Cell. Elsevier Inc., 154(2), pp. 442–451. doi: 10.1016/j.cell.2013.06.044.
Gisler, S. et al. (2019) ‘Multiplexed Cas9 targeting reveals genomic location effects and gRNA-based staggered breaks influencing mutation efficiency’, Nature Communications. Springer US, 10(1598), pp. 1–14. doi: 10.1038/s41467-019-09551-w.
Gopalappa, R. et al. (2018) ‘Paired D10A Cas9 nickases are sometimes more efficient than individual nucleases for gene disruption’, Nucleic Acids Research. Oxford University Press, 46(12), pp. 1–12. doi: 10.1093/nar/gky222.
Gutschner, T. et al. (2016) ‘Post-translational Regulation of Cas9 during G1 Enhances Homology-Directed Repair Resource Post-translational Regulation of Cas9 during G1 Enhances Homology-Directed Repair’, Cell Reports. Elsevier Ltd, 14(6), pp. 1555–1566. doi: 10.1016/j.celrep.2016.01.019.
Heler, R. et al. (2015) ‘Cas9 specifies functional viral targets during CRISPR – Cas adaptation’, Nature. Nature Publishing Group, 519, pp. 199–204. doi: 10.1038/nature14245.
Hong, Y. et al. (2018) ‘Comparison and optimization of CRISPR/dCas9/gRNA genome-labeling systems for live cell imaging’, Genome Biology. Genome Biology, 19(1), pp. 1–10. doi: 10.1186/s13059-018-1413-5.
Hou, Z. et al. (2013) ‘Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis’, Proceedings of the National Academy of Sciences of the United States of America, 110(39), pp. 15644–15649. doi: 10.1073/pnas.1313587110.
Howden, S. E. et al. (2016) ‘A Cas9 variant for efficient generation of indel-free knockin or gene corrected human pluripotent stem cells’, Stem Cell Reports. The Authors, 7(3), pp. 508–517. doi: 10.1016/j.stemcr.2016.07.001.
Hu, J. H. et al. (2018) ‘Evolved Cas9 variants with broad PAM compatibility and high DNA specificity’, Nature. Nature Publishing Group, 556, pp. 57–64. doi: 10.1038/nature26155.
Huang J, Zhou Y, Li J, Lu A and Liang C (2022) CRISPR/Cas systems: Delivery and application in gene therapy. Front. Bioeng. Biotechnol. 10:942325. doi: 10.3389/fbioe.2022.942325.
Ishino, Y. et al. (1987) ‘Nucleotide Sequence of the iap Gene , Responsible for Alkaline Phosphatase Isozyme Conversion in Escherichia coli , and Identification of the Gene Product’, J. Bacteriology, pp. 5429–5433.
Iyer, S. et al. (2019) ‘Precise therapeutic gene correction by a simple nuclease-induced double-stranded break’, Nature. Springer US, 568, pp. 561–565. doi: 10.1038/s41586-019-1076-8.
Jansen, R. et al. (2002) ‘Identification of genes that are associated with DNA repeats in prokaryotes’, Molecular Microbiology, 43(6), pp. 1565–1575. doi: 10.1046/j.1365-2958.2002.02839.x.
Jayavaradhan, R. et al. (2019) ‘CRISPR-Cas9 fusion to dominant-negative 53BP1 enhances HDR and inhibits NHEJ specifically at Cas9 target sites’, Nature Communications. Springer US, pp. 1–13. doi: 10.1038/s41467-019-10735-7.
Jiang, F. et al. (2015) ‘A Cas9-guide RNA complex preorganized for target DNA recognition’, Science, 348(6242), pp. 1477–1481. doi: 10.1126/science.aab1452.
Jiang, F. et al. (2016) ‘Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage’, Science, 351(6275), pp. 867–871. doi: 10.1126/science.aad8282.
Jiang, F. et al. (2016) ‘Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage’, Science, 351(6275), pp. 867–871. doi: 10.1126/science.aad8282.
Jinek, M. et al. (2012) ‘A Programmable Dual-RNA – Guided DNA endonuclease in Adaptive Bacterial Immunity’, Science, 337(August), pp. 816–822.
Jinek, M. et al. (2014) ‘Structures of Cas9 endonucleases reveal RNA-mediated conformational activation’, Science, 343(6176). doi: 10.1126/science.1247997.
Karvelis, T. et al. (2013) ‘crRNA and tracrRNA guide Cas9-mediated DNA interference in Streptococcus thermophilus’, RNA Biology, 10(5), pp. 841–851. doi: 10.4161/rna.24203.
Kim, D. et al. (2016) ‘Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells’, Nature Biotechnology. Nature Publishing Group, 34(8), pp. 863–868. doi: 10.1038/nbt.3609.
Kim, N. et al. (2020) ‘Prediction of the sequence-specific cleavage activity of Cas9 variants’, Nature Biotechnology. Springer US. doi: 10.1038/s41587-020-0537-9.
Kim, S. et al. (2014) ‘Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins’, Genome Research, 24, pp. 1012–1019. doi: 10.1101/gr.171322.113.Freely.
Kleinstiver, B. P. et al. (2015) ‘Engineered CRISPR-Cas9 nucleases with altered PAM specificities’, Nature. doi: 10.1038/nature14592.
Kleinstiver, B. P. et al. (2016) ‘High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects’, Nature. Nature Publishing Group, 529(7587), pp. 490–495. doi: 10.1038/nature16526.
Knight, S. C. et al. (2015) ‘Dynamics of CRISPR-Cas9 genome interrogation in living cells’, Science, 350(6262), pp. 823–826. doi: 10.1126/science.aac6572.
Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016;533:420–4
Koonin, E. V, Makarova, K. S. and Zhang, F. (2017) ‘Diversity , classification and evolution of CRISPR-Cas systems’, Current Opinion in Microbiology. Elsevier Ltd, 37, pp. 67–78. doi: 10.1016/j.mib.2017.05.008.
Künne, T., Swarts, D. C. and Brouns, S. J. J. (2014) ‘Planting the seed: Target recognition of short guide RNAs’, Trends in Microbiology, 22(2), pp. 74–83. doi: 10.1016/j.tim.2013.12.003.
Kuscu, C. et al. (2014) ‘Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease’, Nature Biotechnology. Nature Publishing Group, 32(7), pp. 677–683. doi: 10.1038/nbt.2916.
Li, T., Yang, Y., Qi, H. et al. (2023) CRISPR/Cas9 therapeutics: progress and prospects. Sig Transduct Target Ther 8, 36. https://doi.org/10.1038/s41392-023-01309-7
Lin, et al. (2022) Application of CRISPR/Cas9 System in Establishing Large Animal Models. Front. Cell Dev. Biol., Volume 10. https://doi.org/10.3389/fcell.2022.919155.
Lee, J. K. et al. (2018) ‘Directed evolution of CRISPR-Cas9 to increase its specificity’, Nature Communications. Springer US, 9(3048). doi: 10.1038/s41467-018-05477-x.
Ma, H., Tu, L. C., et al. (2016) ‘CRISPR-Cas9 nuclear dynamics and target recognition in living cells’, Journal of Cell Biology, 214(5), pp. 529–537. doi: 10.1083/jcb.201604115.
Maji, B. et al. (2017) ‘Multidimensional chemical control of CRISPR-Cas9’, Nature Chemical Biology. Nature Publishing Group, 13(1), pp. 9–11. doi: 10.1038/nchembio.2224.
Makarova, K. S. et al. (2015) ‘An updated evolutionary classification of CRISPR-Cas systems’, Nature. Nature Publishing Group, 13, pp. 722–736. doi: 10.1038/nrmicro3569.
Mali, P., Aach, J., et al. (2013) ‘CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering’, Nature Biotechnology, 31(9), pp. 833–838. doi: 10.1038/nbt.2675.
Mali, P., Yang, L., et al. (2013) ‘RNA-Guided Human Genome via CRISPR’, Science, 339(February), pp. 823–827.
Marraffini, L. A. and Sontheimer, E. J. (2008) ‘CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA’, Science, 322(5909), pp. 1843–1845. doi: 10.1126/science.1165771.
Mcginn, J. and Marraffini, L. A. (2019) ‘Molecular mechanisms of CRISPR-Cas spacer acquisition’, Nature Reviews Microbiology. Springer US, 17(January), pp. 7–12. doi: 10.1038/s41579-018-0071-7.
Miller, S. M. et al. (2020) ‘Continuous evolution of SpCas9 variants compatible with non-G PAMs’, Nature Biotechnology. Springer US, 38(4), pp. 471–481. doi: 10.1038/s41587-020-0412-8.
Mojica, F. J. M. et al. (2000) ‘MicroCrrespondence: Biological significance of a family of a regularly spaced repeats in the genomes of Archaea, Bacteria, and mitochondria’, Molecular Microbiology, 36, pp. 244–246.
Mojica, F. J. M. et al. (2005) ‘Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements’, Journal of Molecular Evolution, 60(2), pp. 174–182. doi: 10.1007/s00239-004-0046-3.
Newby, G.A., et al. (2021) Base editing of haematopoietic stem cells rescues sickle cell disease in mice. Nature 595, 295–302. https://doi.org/10.1038/s41586-021-03609-w
Nishimasu, H. et al. (2014) ‘Crystal structure of Cas9 in complex with guide RNA and target DNA’, Cell. Elsevier Inc., 156(5), pp. 935–949. doi: 10.1016/j.cell.2014.02.001.
Nishimasu, H. et al. (2018) ‘Engineered CRISPR-Cas9 nuclease with expanded targeting space’, Science, 9(September), pp. 1259–1262. doi: 10.1126/science.aas9129(2018).
Nishimasu, H. et al. (2018) ‘Engineered CRISPR-Cas9 nuclease with expanded targeting space’, Science, 9(September), pp. 1259–1262. doi: 10.1126/science.aas9129(2018).
Pattanayak, V. et al. (2013) ‘High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity’, Nature Biotechnology. Nature Publishing Group, 31(9), pp. 839–843. doi: 10.1038/nbt.2673.
Pourcel, C., Salvignol, G. and Vergnaud, G. (2005) ‘CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies’, Microbiology, 151(3), pp. 653–663. doi: 10.1099/mic.0.27437-0.
Ran, F. A. et al. (2015) ‘In vivo genome editing using Staphylococcus aureus Cas9’, Nature, 520(7546), pp. 186–191. doi: 10.1038/nature14299.
Rees, H. A. and Liu, D. R. (2018) ‘Base editing : precision chemistry on the genome and transcriptome of living cells’, Nature Reviews Genetics. Springer US, 19(December). doi: 10.1038/s41576-018-0059-1.
Rollie, C. et al. (2015) ‘Intrinsic sequence specificity of the Cas1 integrase directs new spacer acquisition’, eLife, pp. 1–19. doi: 10.7554/eLife.08716.
Sapranauskas, R. et al. (2011) ‘The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli’, Nucleic Acids Research, 39(21), pp. 9275–9282. doi: 10.1093/nar/gkr606.
Schmid-Burgk, J. L. et al. (2020) ‘Highly Parallel Profiling of Cas9 Variant Specificity’, Molecular Cell. Elsevier Inc., 78(4), pp. 794-800.e8. doi: 10.1016/j.molcel.2020.02.023.
Senturk, S. et al. (2017) ‘Rapid and tunable method to temporally control gene editing based on conditional Cas9 stabilization’, Nature Communications. Nature Publishing Group, 8(May 2015), pp. 1–10. doi: 10.1038/ncomms14370.
Shen, M. W. et al. (2018) ‘Predictable and precise template-free CRISPR editing of pathogenic variants’, Nature. Springer US, 563(7733), pp. 646–651. doi: 10.1038/s41586-018-0686-x.
Sheridan, C. (2023) The world’s first CRISPR therapy approved: who will receive it? Nature Biotechnology. doi: https://doi.org/10.1038/d41587-023-00016-6
Slaymaker, I. M. et al. (2016) ‘Rationally engineered Cas9 nucleases with improved specificity’, Science, 351(6268), pp. 84–89.
Stepper, P. et al. (2017) ‘Efficient targeted DNA methylation with chimeric dCas9-Dnmt3a-Dnmt3L methyltransferase’, Nucleic Acids Research, 45(4), pp. 1703–1713. doi: 10.1093/nar/gkw1112.
Sternberg, S. H. et al. (2014) ‘DNA interrogation by the CRISPR RNA-guided endonuclease Cas9’, Nature. Nature Publishing Group, 507(7490), pp. 62–67. doi: 10.1038/nature13011.
Sürün D, et al. (2020) Efficient Generation and Correction of Mutations in Human iPS Cells Utilizing mRNAs of CRISPR Base Editors and Prime Editors. Genes. 2020;11:511
Szczelkun, M. D. et al. (2014) ‘Direct observation of R-loop formation by single RNA-guided Cas9 and Cascade effector complexes’, Proceedings of the National Academy of Sciences of the United States of America, 111(27), pp. 9798–9803. doi: 10.1073/pnas.1402597111.
Vakulskas, C. A. et al. (2018) ‘A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells’, Nature Medicine. Springer US, 24(August), pp. 1216–1224. doi: 10.1038/s41591-018-0137-0.
van Overbeek, M. et al. (2016) ‘DNA Repair Profiling Reveals Nonrandom Outcomes at Cas9-Mediated Breaks’, Molecular Cell. Elsevier Inc., 63(4), pp. 633–646. doi: 10.1016/j.molcel.2016.06.037.
Walton, R. T. et al. (2020) ‘Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants’, Science, 368(6488), pp. 290–296. doi: 10.1126/science.aba8853.
Wei, Y., Terns, R. M. and Terns, M. P. (2015) ‘Cas9 function and host genome sampling in Type II-A CRISPR – Cas adaptation’, Genes & Development, pp. 356–361. doi: 10.1101/gad.257550.114.
Wilkinson, M. et al. (2019) ‘Structure of the DNA-Bound Spacer Capture Complex of a Type II CRISPR-Cas System Article Structure of the DNA-Bound Spacer Capture Complex of a Type II CRISPR-Cas System’, Molecular Cell. The Author(s), 75(1), pp. 90-101.e5. doi: 10.1016/j.molcel.2019.04.020.
Wright, A. V and Doudna, J. A. (2016) ‘Protecting genome integrity during CRISPR immune adaptation’, Nature. Nature Publishing Group, 23(10). doi: 10.1038/nsmb.3289.
Wu, X. et al. (2014) ‘Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells’, Nature Biotechnology. Nature Publishing Group, 32(7), pp. 670–676. doi: 10.1038/nbt.2889.
Xiao, Y., Luo, M., et al. (2017) ‘Structure Basis for Directional R-loop Formation and Substrate Handover Mechanisms in Type I CRISPR- Cas System Article Structure Basis for Directional R-loop Formation and Substrate Handover Mechanisms in Type I CRISPR-Cas System’, Cell. Elsevier, 170(1), pp. 48-60.e11. doi: 10.1016/j.cell.2017.06.012.
Xiao, Y., Ng, S., et al. (2017) ‘How type II CRISPR-Cas establish immunity through Cas1-Cas2-mediated spacer integration’, Nature. Nature Publishing Group, 550(7674), pp. 137–141. doi: 10.1038/nature24020.
Yamada, M. et al. (2017) ‘Crystal Structure of the Minimal Cas9 from Campylobacter jejuni Reveals the Molecular Diversity in the CRISPR-Cas9 Systems’, Molecular Cell. Elsevier Inc., 65(6), pp. 1109-1121.e3. doi: 10.1016/j.molcel.2017.02.007.
Yeo, N. C. et al. (2018) ‘An enhanced CRISPR repressor for targeted mammalian gene regulation’, Nature Methods. Springer US, 15(8), pp. 611–616. doi: 10.1038/s41592-018-0048-5.
Yao, R., Liu, D., Jia, X., Zheng, Y., Liu, W., Xiao, Y. (2018) CRISPR-Cas9/Cas12a biotechnology and application in bacteria. Synthetic and Systems Biotechnology. Volume 3, Issue 3:135-149, https://doi.org/10.1016/j.synbio.2018.09.004.
Zhang, Jingfang et al. (2019) ‘Drug Inducible CRISPR/Cas Systems’, Computational and Structural Biotechnology Journal. Elsevier B.V., 17, pp. 1171–1177. doi: 10.1016/j.csbj.2019.07.015.
Zhao, C. et al. (2018) ‘HIT-Cas9 : A CRISPR / Cas9 Genome-Editing Device under Tight and Effective Drug Control’, Molecular Therapy: Nucleic Acid. Elsevier Ltd., 13(December), pp. 208–219. doi: 10.1016/j.omtn.2018.08.022.
Zheng, T. et al. (2017) ‘Profiling single-guide RNA specificity reveals a mismatch sensitive core sequence’, Scientific Reports. Nature Publishing Group, 7, pp. 1–8. doi: 10.1038/srep40638.
Zhu, H., Li, C. & Gao, C. (2020) Applications of CRISPR–Cas in agriculture and plant biotechnology. Nat Rev Mol Cell Biol 21, 661–677. https://doi.org/10.1038/s41580-020-00288-9
Zuo, Z. and Liu, J. (2016) ‘Cas9-catalyzed DNA Cleavage Generates Staggered Ends: Evidence from Molecular Dynamics Simulations’, Scientific Reports. Nature Publishing Group, 5(August), pp. 1–9. doi: 10.1038/srep37584.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Articles published in Indonesian Journal Life of Sciences are licensed under a Creative Commons Attribution-ShareAlike 4.0 International license. You are free to copy, transform, or redistribute articles for any lawful purpose in any medium, provided you give appropriate credit to the original author(s) and Indonesian Journal Life of Sciences, link to the license, indicate if changes were made, and redistribute any derivative work under the same license. Copyright on articles is retained by the respective author(s), without restrictions. A non-exclusive license is granted to Indonesian Journal Life of Sciences to publish the article and identify itself as its original publisher, along with the commercial right to include the article in a hardcopy issue for sale to libraries and individuals. By publishing in Indonesian Journal Life of Sciences, authors grant any third party the right to use their article to the extent provided by the Creative Commons Attribution-ShareAlike 4.0 International license.