A Review on Pharmacological Activity of Monarda fistulosa L.

  • Berthalia Marshella Wahyudi Institut Bio Scientia Internasional Indonesia, Jakarta indonesia
  • Cecilia Ashley Chung Institut Bio Scientia Internasional Indonesia, Jakarta Indonesia
  • Celine Chelovna Institut Bio scientia Internasional Indonesia, Jakarta Indonesia
  • Fenny Soetanto Institut Bio Scientia International Indonesia, Jakarta Indonesia
  • Giovanni Anggasta Institut Bio Scientia International Indonesia, Jakarta Indonesia
  • Qastalia Zafira Institut Bio Scientia Internasional Indonesia, Jakarta Indonesia
  • Nurul Fajry Maulida Institut Bio Scientia Internasional Indonesia, Jakarta Indonesia
  • Audrey Amira Crystalia Institut Bio Scientia Internasional Indonesia, Jakarta Indonesia
Keywords: Monarda fistulosa, pharmacological activity, phytochemicals, review

Abstract

Monarda fistulosa is a plant often used in traditional medication with numerous benefits. This review paper aims to elaborate on the phytochemicals of Monarda fistulosa that contribute to its pharmacological activity. Numerous studies have found the bioactive compounds of Monarda fistulosa including carvacrol, thymol, thymoquinone, flavonoid, ????-pinene, caryophyllene oxide, limonene, and geraniol. Researchers have found several pharmacological activities in relation to these compounds including antimicrobial, antidiabetic, anticancer, anti-inflammatory, antioxidants, and immunomodulatory properties. Evidence shows that Monarda fistulosa has potential for applications in many areas. Nevertheless, further clinical studies still have to be conducted to assess the effects of this plant.

Downloads

Download data is not yet available.

Author Biographies

Berthalia Marshella Wahyudi, Institut Bio Scientia Internasional Indonesia, Jakarta indonesia

Department of Pharmacy, Institut Bio Scientia Internasional Indonesia

Cecilia Ashley Chung, Institut Bio Scientia Internasional Indonesia, Jakarta Indonesia

Department of Pharmacy, Institut Bio Scientia Internasional Indonesia

Celine Chelovna, Institut Bio scientia Internasional Indonesia, Jakarta Indonesia

Department of Pharmacy, Institut Bio scientia Internasional Indonesia

Fenny Soetanto, Institut Bio Scientia International Indonesia, Jakarta Indonesia

Department of Pharmacy, Institut Bio Scientia International Indonesia

Giovanni Anggasta, Institut Bio Scientia International Indonesia, Jakarta Indonesia

Department of Pharmacy, Institut Bio Scientia International Indonesia

Qastalia Zafira, Institut Bio Scientia Internasional Indonesia, Jakarta Indonesia

Department of Pharmacy, Institut Bio Scientia Internasional Indonesia

Nurul Fajry Maulida, Institut Bio Scientia Internasional Indonesia, Jakarta Indonesia

Department of Pharmacy, Institut Bio Scientia Internasional Indonesia

Audrey Amira Crystalia, Institut Bio Scientia Internasional Indonesia, Jakarta Indonesia

Department of Pharmacy, Institut Bio Scientia Internasional Indonesia

References

Abd-Elbaset, M., Arafa, E., El Sherbiny, G., Abdel-Bakky, M., & Elgendy, A. (2016). Thymoquinone mitigate ischemia-reperfusion-induced liver injury in rats: a pivotal role of nitric oxide signaling pathway. Naunyn-Schmiedeberg's Archives Of Pharmacology, 390(1), 69-76. doi: 10.1007/s00210-016-1306-7
Alaufi, O. M., Noorwali, A., Zahran, F., Al-Abd, A. M., & Al-Attas, S. (2017). Cytotoxicity of thymoquinone alone or in combination with cisplatin (CDDP) against oral squamous cell carcinoma in vitro. Scientific reports, 7(1), 1-12. doi: 10.1038/s41598-017-13357-5
Adebayo, O., Bélanger, A., & Khanizadeh, S. (2013). Variable inhibitory activities of essential oils of three Monarda species on the growth of Botrytis cinerea. Canadian Journal Of Plant Science, 93(6), 987-995. doi: 10.4141/cjps2013-044
Amirghofran, Z., Ahmadi, H., Karimi, M. H., Kalantar, F., Gholijani, N., & Malek-Hosseini, Z. (2016). In vitro inhibitory effects of thymol and carvacrol on dendritic cell activation and function. Pharmaceutical biology, 54(7), 1125–1132. https://doi.org/10.3109/13880209.2015.1055579
Armutcu, F., Akyol, S., & Akyol, O. (2018). The interaction of glutathione and thymoquinone and their antioxidant properties. Electronic Journal Of General Medicine, 15(4). doi: 10.29333/ejgm/89493
Atta, M., El-Far, A., Farrag, F., Abdel-Daim, M., Al Jaouni, S., & Mousa, S. (2018). Thymoquinone Attenuates Cardiomyopathy in Streptozotocin-Treated Diabetic Rats. Oxidative Medicine And Cellular Longevity, 2018, 1-10. doi: 10.1155/2018/7845681
Badr, G., Mahmoud, M., Farhat, K., Waly, H., Al-Abdin, O., & Rabah, D. (2013). Maternal supplementation of diabetic mice with thymoquinone protects their offspring from abnormal obesity and diabetes by modulating their lipid profile and free radical production and restoring lymphocyte proliferation via PI3K/AKT signaling. Lipids In Health And Disease, 12(1). doi: 10.1186/1476-511x-12-37
Baraldi, P. G., Preti, D., Materazzi, S., & Geppetti, P. (2010). Transient receptor potential ankyrin 1 (TRPA1) channel as emerging target for novel analgesics and anti-inflammatory agents. Journal of medicinal chemistry, 53(14), 5085-5107. doi: 10.1021/jm100062h
Barkat, M. A., Pottoo, F. H., Beg, S., Rahman, M., & Ahmad, F. J. (2020). Evidence-Based Review on Clinical Potential of Thymoquinone in Breast Cancer. In Nanomedicine for Bioactives (pp. 471-486). Springer, Singapore. doi: 10.1007/978-981-15-1664-1_19
Barreca, D., Gattuso, G., Bellocco, E., Calderaro, A., Trombetta, D., & Smeriglio, A. et al. (2017). Flavanones: Citrus phytochemical with health-promoting properties. Biofactors, 43(4), 495-506. doi: 10.1002/biof.1363
Bhakkiyalakshmi, E., Suganya, N., Sireesh, D., Krishnamurthi, K., Saravana Devi, S., Rajaguru, P., & Ramkumar, K. (2016). Carvacrol induces mitochondria-mediated apoptosis in HL-60 promyelocytic and Jurkat T lymphoma cells. European Journal Of Pharmacology, 772, 92-98. doi: 10.1016/j.ejphar.2015.12.046
Brito, L. F., Oliveira, H. B. M., das Neves Selis, N., e Souza, C. L. S., Júnior, M. N. S., de Souza, E. P., ... & de Oliveira, M. V. (2019). Anti‐inflammatory activity of β‐caryophyllene combined with docosahexaenoic acid in a model of sepsis induced by Staphylococcus aureus in mice. Journal of the Science of Food and Agriculture, 99(13), 5870-5880.
Chavan, M. J., Wakte, P. S., & Shinde, D. B. (2010). Analgesic and anti-inflammatory activity of Caryophyllene oxide from Annona squamosa L. bark. Phytomedicine, 17(2), 149-151. doi: 10.1016/j.phymed.2009.05.016
Chen, Y., Wang, B., & Zhao, H. (2018). Thymoquinone reduces spinal cord injury by inhibiting inflammatory response, oxidative stress and apoptosis via PPAR‑γ and PI3K/Akt pathways. Experimental And Therapeutic Medicine. doi: 10.3892/etm.2018.6072
Darakhshan, S., Bidmeshki Pour, A., Hosseinzadeh Colagar, A., & Sisakhtnezhad, S. (2015). Thymoquinone and its therapeutic potentials. Pharmacological Research, 95-96, 138-158. doi: 10.1016/j.phrs.2015.03.011
de Cássia da Silveira e Sá, R., Andrade, L., & de Sousa, D. (2013). A Review on Anti-Inflammatory Activity of Monoterpenes. Molecules, 18(1), 1227-1254. doi: 10.3390/molecules18011227
de Santana, M. F., Guimarães, A. G., Chaves, D. O., Silva, J. C., Bonjardim, L. R., Lucca Júnior, W. D., ... & Villarreal, C. F. (2015). The anti-hyperalgesic and anti-inflammatory profiles of p-cymene: Evidence for the involvement of opioid system and cytokines. Pharmaceutical Biology, 53(11), 1583-1590.
Deepak, V., Kruger, M. C., & Coetzee, M. (2017). Geraniol attenuates osteoclast differentiation by suppressingNF-kB activity and expression of osteoclastogenic genes. Medicinal Chemistry Research, 26(1), 19-26. doi: 10.1007/s00044-016-1715-7
Dhifi, W., Bellili, S., Jazi, S., Bahloul, N., & Mnif, W. (2016). Essential oils’ chemical characterization and investigation of some biological activities: A critical review. Medicines, 3(4), 25. doi: 10.3390/medicines3040025
Diaz-Vivancos, P., de Simone, A., Kiddle, G., & Foyer, C. (2015). Glutathione – linking cell proliferation to oxidative stress. Free Radical Biology And Medicine, 89, 1154-1164. doi: 10.1016/j.freeradbiomed.2015.09.023
Dindo, M. L., Modesto, M., Rossi, C., Di Vito, M., Burgio, G., Barbanti, L., & Mattarelli, P. (2020). Monarda fistulosa hydrolate as antimicrobial agent in artificial media for the in vitro rearing of the tachinid parasitoid Exorista larvarum. Entomologia Experimentalis et Applicata. doi: 10.1111/eea.12964
El-Shemi, A. G., Kensara, O. A., Alsaegh, A., & Mukhtar, M. H. (2017). Pharmacotherapy with Thymoquinone Improved Pancreatic β-Cell Integrity and Functional Activity, Enhanced Islets Revascularization, and Alleviated Metabolic and Hepato-Renal Disturbances in Streptozotocin-Induced Diabetes in Rats. Pharmacology, 101(1-2), 9–21. doi:10.1159/000480018
Ezz-Eldin, Y. M., Aboseif, A. A., & Khalaf, M. M. (2020). Potential anti-inflammatory and immunomodulatory effects of carvacrol against ovalbumin-induced asthma in rats. Life Sciences, 242, 117222. doi: 10.1016/j.lfs.2019.117222
Farkhondeh, T., Samarghandian, S., & Borji, A. (2017). An overview on cardioprotective and anti-diabetic effects of thymoquinone. Asian Pacific Journal Of Tropical Medicine, 10(9), 849-854. doi: 10.1016/j.apjtm.2017.08.020
Fouad, A., & Alwadani, F. (2015). Ameliorative effects of thymoquinone against eye lens changes in streptozotocin diabetic rats. Environmental Toxicology And Pharmacology, 40(3), 960-965. doi: 10.1016/j.etap.2015.09.010
Gholamnezhad, Z., Rafatpanah, H., Sadeghnia, H. R., & Boskabady, M. H. (2015). Immunomodulatory and cytotoxic effects of Nigella sativa and thymoquinone on rat splenocytes. Food and Chemical Toxicology, 86, 72-80. doi: 10.1016/j.fct.2015.08.028
Gholijani, N., & Amirghofran, Z. (2016). Effects of thymol and carvacrol on T-helper cell subset cytokines and their main transcription factors in ovalbumin-immunized mice. Journal Of Immunotoxicology, 13(5), 729-737. doi: 10.3109/1547691x.2016.1173134
Gholijani, N., Gharagozloo, M., Kalantar, F., Ramezani, A., & Amirghofran, Z. (2015). Modulation of Cytokine Production and Transcription Factors Activities in Human Jurkat T Cells by Thymol and Carvacrol. Advanced Pharmaceutical Bulletin, 5(Suppl 1), 653-660. doi: 10.15171/apb.2015.089
Ghosh, M., Schepetkin, I. A., Özek, G., Özek, T., Khlebnikov, A. I., Damron, D. S., & Quinn, M. T. (2020). Essential Oils from Monarda fistulosa: Chemical Composition and Activation of Transient Receptor Potential A1 (TRPA1) Channels. Molecules, 25(21), 4873. doi: 10.3390/molecules25214873
Goyal, S., Prajapati, C., Gore, P., Patil, C., Mahajan, U., & Sharma, C. et al. (2017). Therapeutic Potential and Pharmaceutical Development of Thymoquinone: A Multitargeted Molecule of Natural Origin. Frontiers In Pharmacology, 8. doi: 10.3389/fphar.2017.00656
Grzeszczuk, M., Wesolowska, A., & Stefaniak, A. (2020). Biological value and essential oil composition of two Monarda species flowers. Acta Sci. Pol. Hortorum Cultus, 19, 105-119. doi: 10.24326/asphc.2020.4.10
Harding, J. L., Pavkov, M. E., Magliano, D. J., Shaw, J. E., & Gregg, E. W. (2019). Global trends in diabetes complications: a review of current evidence. Diabetologia, 62(1), 3-16. doi: 10.1007/s00125-018-4711-2
Hossen, M. J., Yang, W. S., Kim, D., Aravinthan, A., Kim, J. H., & Cho, J. Y. (2017). Thymoquinone: an IRAK1 inhibitor with in vivo and in vitro anti-inflammatory activities. Scientific reports, 7(1), 1-12.
Hussain, T., Tan, B., Yin, Y., Blachier, F., Tossou, M., & Rahu, N. (2016). Oxidative Stress and Inflammation: What Polyphenols Can Do for Us?. Oxidative Medicine And Cellular Longevity, 2016, 1-9. doi: 10.1155/2016/7432797
Igor, C., Ana, C., & Vladimir, V. (2020). Obtaining the Wild bergamot essential oil with high content of thymoquinone. Moldovan Medical Journal, 2(63), 40-43. doi: 10.5281/zenodo.3866012
Islam, M., Khalipha, A., Bagchi, R., Mondal, M., Smrity, S., & Uddin, S. et al. (2018). Anticancer activity of thymol: A literature-based review and docking study with Emphasis on its anticancer mechanisms. IUBMB Life, 71(1), 9-19. doi: 10.1002/iub.1935
Ježek, P., Jabůrek, M., & Plecitá-Hlavatá, L. (2019). Contribution of Oxidative Stress and Impaired Biogenesis of Pancreatic β-Cells to Type 2 Diabetes. Antioxidants & Redox Signaling, 31(10), 722-751. doi: 10.1089/ars.2018.7656
Kara, M., Uslu, S., Demirci, F., Temel, H. E., & Baydemir, C. (2015). Supplemental carvacrol can reduce the severity of inflammation by influencing the production of mediators of inflammation. Inflammation, 38(3), 1020-1027.
Khan, M.A., Tania, M., Fu, S.,& Fu, J. (2017). Thymoquinone, as an Anticancer Molecule: From Basic Research to clinical investigation. Oncotarget, 8(31), 51907–51919. doi: 10.18632/oncotarget.17206.
Kornienko, J., Smirnova, I., Pugovkina, N., Ivanova, J., Shilina, M., & Grinchuk, T. et al. (2019). High doses of synthetic antioxidants induce premature senescence in cultivated mesenchymal stem cells. Scientific Reports, 9(1). doi: 10.1038/s41598-018-37972-y
Kurkin, V., Lapina, A., Daeva, E., & Kadentsev, V. (2020). Flavonoids from Herb of Monarda fistulosa. Chemistry Of Natural Compounds, 56(2), 242-245. doi: 10.1007/s10600-020-02997-1
Li, Y., Wen, J., Du, C., Hu, S., Chen, J., & Zhang, S. et al. (2017). Thymol inhibits bladder cancer cell proliferation via inducing cell cycle arrest and apoptosis. Biochemical And Biophysical Research Communications, 491(2), 530-536. doi: 10.1016/j.bbrc.2017.04.009
Lourenço, S., Moldão-Martins, M., & Alves, V. (2019). Antioxidants of Natural Plant Origins: From Sources to Food Industry Applications. Molecules, 24(22), 4132. doi: 10.3390/molecules24224132
Mattarelli, P., Epifano, F., Minardi, P., Di Vito, M., Modesto, M., Barbanti, L., & Bellardi, M. (2017). Chemical Composition and Antimicrobial Activity of Essential Oils from Aerial Parts ofMonarda didymaandMonarda fistulosaCultivated in Italy. Journal Of Essential Oil Bearing Plants, 20(1), 76-86. doi: 10.1080/0972060x.2016.1278184
McLellan, A. (2017). U.S. Patent Application No. 15/417,841.
Memar, M. Y., Raei, P., Alizadeh, N., Aghdam, M. A., & Kafil, H. S. (2017). Carvacrol and thymol: strong antimicrobial agents against resistant isolates. Reviews in Medical Microbiology, 28(2), 63-68. doi: 10.1097/MRM.0000000000000100
Nawale, R., Mate, G., & Wakure, B. (2017). Ethanolic extract of Amaranthus paniculatus Linn. ameliorates diabetes-associated complications in alloxan-induced diabetic rats. Integrative Medicine Research, 6(1), 41-46. doi: 10.1016/j.imr.2016.11.001
Oroian, M., & Escriche, I. (2015). Antioxidants: Characterization, natural sources, extraction and analysis. Food Research International, 74, 10-36. doi: 10.1016/j.foodres.2015.04.018
Panche, A., Diwan, A., & Chandra, S. (2016). Flavonoids: an overview. Journal Of Nutritional Science, 5. doi: 10.1017/jns.2016.41
Papich, M. (2016). Streptozocin. Saunders Handbook Of Veterinary Drugs, 742-743. doi: 10.1016/b978-0-323-24485-5.00523-4
Perez, R. M. (2001). Anti-inflammatory activity of compounds isolated from plants. TheScientificWorldJournal, 1, 713–784. doi: 10.1100/tsw.2001.77
Pérez-Rosés, R., Risco, E., Vila, R., Peñalver, P., & Cañigueral, S. (2015). Effect of some essential oils on phagocytosis and complement system activity. Journal of agricultural and food chemistry, 63(5), 1496-1504. doi: 10.1021/jf504761m
Pivetta, T. P., Simões, S., Araújo, M. M., Carvalho, T., Arruda, C., & Marcato, P. D. (2018). Development of nanoparticles from natural lipids for topical delivery of thymol: Investigation of its anti-inflammatory properties. Colloids and Surfaces B: Biointerfaces, 164, 281-290.
Prabhakar, P., Reeta, K., Maulik, S., Dinda, A., & Gupta, Y. (2015). Protective effect of thymoquinone against high-fructose diet-induced metabolic syndrome in rats. European Journal Of Nutrition, 54(7), 1117-1127. doi: 10.1007/s00394-014-0788-7
Ramalho, T. R., Oliveira, M. T., Lima, A. L., Bezerra-Santos, C. R., & Piuvezam, M. R. (2015). Gamma-Terpinene Modulates Acute Inflammatory Response in Mice. Planta medica, 81(14), 1248–1254. doi: 10.1055/s-0035-1546169
Rohlfsen, W. G. (2017). U.S. Patent No. 9,776,939. Washington, DC: U.S. Patent and Trademark Office.
Salehi, B., Mishra, A. P., Shukla, I., Sharifi‐Rad, M., Contreras, M. D. M., Segura‐Carretero, A., ... & Sharifi‐Rad, J. (2018). Thymol, thyme, and other plant sources: Health and potential uses. Phytotherapy Research, 32(9), 1688-1706. doi: 10.1002/ptr.6109
Santana, H., de Carvalho, F. O., Silva, E. R., Santos, N., Shanmugam, S., Santos, D. N., Wisniewski, J. O., Junior, J., Nunes, P. S., Araujo, A., de Albuquerque Junior, R., & Dos Santos, M. (2020). Anti-Inflammatory Activity of Limonene in the Prevention and Control of Injuries in the Respiratory System: A Systematic Review. Current pharmaceutical design, 26(18), 2182–2191. doi: 10.2174/1381612826666200320130443
Salehi, B., Upadhyay, S., Erdogan Orhan, I., Kumar Jugran, A., LD Jayaweera, S., A Dias, D., ... & C Cho, W. (2019). Therapeutic potential of α-and β-pinene: A miracle gift of nature. Biomolecules, 9(11), 738.
Semwal, R., Semwal, D., Combrinck, S., Trill, J., Gibbons, S., & Viljoen, A. (2019). Acacetin—A simple flavone exhibiting diverse pharmacological activities. Phytochemistry Letters, 32, 56-65. doi: 10.1016/j.phytol.2019.04.021
Shanaida, M., Hudz, N., Korzeniowska, K., & Wieczorek, P. (2018). Antioxidant activity of essential oils obtained from aerial part of some Lamiaceae species. International Journal Of Green Pharmacy, 12(3), 200-204. doi: 10.22377/ijgp.v12i03.1952
Shaterzadeh-Yazdi, H., Noorbakhsh, M. F., Hayati, F., Samarghandian, S., & Farkhondeh, T. (2018). Immunomodulatory and anti-inflammatory effects of thymoquinone. Cardiovascular & Haematological Disorders-Drug Targets (Formerly Current Drug Targets-Cardiovascular & Hematological Disorders), 18(1), 52-60. doi: 10.2174/1871529X18666180212114816
Shi, G., Shi, G., Zhou, J., Zhang, W., Gao, C., & Jiang, Y. et al. (2018). Involvement of growth factors in diabetes mellitus and its complications: A general review. Biomedicine & Pharmacotherapy, 101, 510-527. doi: 10.1016/j.biopha.2018.02.105
Shutava, H., & Shutava, T. (2018). Antiradical and Antibacterial Activity of Essential Oils from the Lamiaceae Family Plants in Connection with their Composition and Optical Activity of Components. International Journal Of Secondary Metabolite, 109-122. doi: 10.21448/ijsm.408165
Thompson, T., Kiehne, P., Maroko, J., Kapsner, T. R., & Angerhofer, C. K. (2013). Seasonal Variation in Chemistry and Biological Activity of Monarda fistulosa L. Planta Medica, 79(05), P11. doi: 10.1055/s-0033-1336453
Ye, C. J., Li, S. A., Zhang, Y., & Lee, W. H. (2019). Geraniol targets KV1. 3 ion channel and exhibits anti-inflammatory activity in vitro and in vivo. Fitoterapia, 139, 104394. doi: 10.1016/j.fitote.2019.104394
Yue, J., & López, J. (2020). Understanding MAPK Signaling Pathways in Apoptosis. International Journal Of Molecular Sciences, 21(7), 2346. doi: 10.3390/ijms21072346
Zhilyakova, E. T., Novikov, O. O., Naumenko, E. N., Krichkovskaya, L. V., Kiseleva, T. S., Timoshenko, E. Y., Novikova, M. Y., & Litvinov, S. A. (2009). Study of Monarda fistulosa essential oil as a prospective antiseborrheic agent. Bulletin of experimental biology and medicine, 148(4), 612–614. https://doi.org/10.1007/s10517-010-0777-7
Zsombok, A., & Derbenev, A. (2016). TRP Channels as Therapeutic Targets in Diabetes and Obesity. Pharmaceuticals, 9(3), 50. doi: 10.3390/ph9030050
Zuzarte, M., Alves-Silva, J. M., Alves, M., Cavaleiro, C., Salgueiro, L., & Cruz, M. T. (2018). New insights on the anti-inflammatory potential and safety profile of Thymus carnosus and Thymus camphoratus essential oils and their main compounds. Journal of ethnopharmacology, 225, 10-17.
Published
2022-09-30
Section
Life Science for Health and Wellbeing