The Influence of Macronutrient Intake towards Intestinal Mucus Production
Abstract
Intestinal mucus layer plays a crucial role in protecting the epithelium layer and acts as a barrier to separate the epithelium layer from pathogenic microorganisms. The mucus is synthesized by the goblet cells located in the epithelium layer. The production of mucus inside the goblet cells is regulated by the expression of mucin gene family, such as MUC2 for the mucus production in jejunum, ileum, and colon. Recent studies had suggested the influence of macronutrient intake, such as carbohydrate and fat, in mucus production. High fiber diet and resistant starch consumption were found to positively affect mucus production through upregulating mucin gene expression. Meanwhile, high saturated fat diet was found to negatively affect mucus production by promoting ER stress and downregulating epithelial differentiation transcription factor (KLF4). Nonetheless, a low saturated fat diet was found to upregulate mucin expression. Unsaturated fat diet (oleic acid, linoleic acid, EPA, and DHA), on the other hand, decreased mucin expression by disrupting epithelial differentiation transcription factors (HATH1 and TLR4). Studies on the effect of dietary intake on mucus production are still limited, especially in the underlying molecular pathway. Therefore, further research on the molecular pathway on the effect of dietary intake on mucus production needs to be performed.
Downloads
References
Chen, T., Chen, D., Tian, G., Zheng, P., Mao, X., … Yu, B. (2019). Soluble Fiber and Insoluble Fiber Regulate Colonic Microbiota and Barrier Function in a Piglet Model. BioMed Research International, pp: 1-12. doi: 10.1155/2019/7809171
Conlon, M., & Bird, A. (2014). The impact of diet and lifestyle on gut microbiota and human health. Nutrients, 7(1), 17-44. doi: 10.3390/nu7010017
Corfield, A. (2018). The interaction of the gut microbiota with the mucus barrier in health and disease in human. Microorganisms, 6(3), 1-57. doi: 10.3390/microorganisms6030078
Cornick, S., Tawiah, A., & Chadee, K. (2015). Roles and regulation of the mucus barrier in the gut. Tissue Barriers, 3(1-2), 1-15. doi: 10.4161/21688370.2014.982426
Darsigny, M., Babeu, J. P., Durpuis, A. A., Furth, E. E., Ernest, G. S., … Boudreau, F. (2009). Loss of hepatocyte-nuclear-factor-4α affects colonic ion transport and causes chronic inflammation resembling inflammatory bowel disease in mice. PLOS ONE, 4(10), 1-10. doi: 10.1371/journal.pone.0007609
Desai, M. S., Seekatz, A. M., Koropatkin, N. M., Kamada, N., Hickey, C. A., … Martens, E. C. (2016). A Dietary Fiber-Deprived Gut Microbiota Degrades the Colonic Mucus Barrier and Enhances Pathogen Susceptibility. Cell, 167(5), 1339-1353. doi: 10.1016/j.cell.2016.10.043
Duriancik, D. M., Comstock, S. S., Langohr, I. M., & Fenton, J. I. (2015). High levels of fish oil enhance neutrophil development and activation and influence colon mucus barrier function in a genetically susceptible mouse model. Journal Nutrition Biochemical, 26(11), 1261-1272. doi: 10.1016/j.jnutbio.2015.06.002
Escoula, Q., Bellenger, S., Narce, M., & Bellenger, J. (2019). Docosahexaenoic and eicosapentaenoic acids prevent altered-Muc2 secretion induced by palmitic acid by alleviating endoplasmic reticulum stress in LS174T goblet cells. Nutrients, 11(9), 1-14. doi: 10.3390/nu11092179
Garces, R., Force, E. M., Salas, J. J., & Caleron, M. V. (2009). Current advances in sunflower oil and its applications. Lipid Technology, 21(4), 79-82. doi: 10.1002/lite.200900016
Gaudier, E., Rival, M., Buisine, M. P., Robineau, I., & Hoebler, C. (2009). Butyrate enemas upregulate Muc genes expression but decrease adherent mucus thickness in mice colon. Physiological Research, 58(1), 111-119. doi: 10.33549/physiolres.931271
Ghosh, S. S., Wang, J., Yannie, P. J., Sandhu, Y. K., Korzun, W. J., & Ghosh, S. (2020). Dietary supplementation with galactooligosaccharides attenuates high-fat, high-cholesterol diet-induced glucose intolerance and disruption of colonic mucin layer in C57BL/6 mice and reduces atherosclerosis in LDLr -/-mice. The Journal of Nutrition, pp: 285-293. doi: 10.1093/jn/nxz233
Gulhane, M., Murray, L., Lourie, R., Tong, H., Sheng, Y. H., … Hasnain, S. Z. (2016). High fat diets induce colonic epithelial cell stress and inflammation that is reversed by IL-22. Scientific Reports, 6(28990), 1-17. doi: 10.1038/srep28990
Hansson, G. (2012). Role of mucus layers in gut infection and inflammation. Current Opinion In Microbiology, 15(1), 57-62. doi: 10.1016/j.mib.2011.11.002
Henningsson, Å., Björck, I., & Nyman, M. (2001). Short-chain fatty acid formation at fermentation of indigestible carbohydrates. Näringsforskning, 45(1), 165-168. doi: 10.3402/fnr.v45i0.1801
Hinoda, Y., Akashi, H., Suwa, T., Itoh, F., Adachi, M., … Imai, K. (1998). Immunohistochemical detection of MUC2 Mucin Core Protein in Ulcerative Colitis. Journal of Clinical Laboratory Analysis, 12, 150-153. doi: 10.1002/(SICI)1098-2825(1998)12:3<150::AID-JCLA4>3.0.CO;2-D
Johansson, M., Larsson, J., & Hansson, G. (2010). The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proceedings of The National Academy Of Sciences, 108, 4659-4665. doi: 10.1073/pnas.1006451107
Katz, J. P., Perreault, N., Goldstein, B. G., Lee, C. S., Labosky, P. A., … Kaestner, K. H. (2002). The zinc-finger transcription factor Klf4 is required for terminal differentiation of goblet cells in the colon. Development., 128(11), 2619-2628. doi: 10.1242/DEV.129.11.2619
Kleessen, B., Hartmann, L., & Blaut, M. (2003). Fructans in the diet cause alterations of intestinal mucosal architecture, released mucins and mucosa-associated bifidobacteria in gnotobiotic rats. British Journal of Nutrition, 89(5), 597-606. doi: 10.1079/BJN2002827
Ma, Y., Zhou, G., Li, Y., Zhu, Y., Yu, X., ... Li, C. (2018). Intake of fish oil specifically modulates colonic Muc2 expression in middle-aged rats by suppressing the glycosylation process. Molecular Nutrition Food Research, 62, 1-9. doi: 10.1002/mnfr.201700661
Park, E. T., Oh, H. K., Gum, J. R., Crawley, S. C., Kakar, S., … Kim, Y. S. (2006). HATH1 expression in mucinous cancers of the colorectum and related lesions. Human Cancer Biology, 12(6), 5403-5410. doi: 10.1158/1078-0432.CCR-06-0573
Saqui-Salces, M., Huang, Z., Vila, M., Li, J., Mielke, J., ... Shurson, G. (2017). Modulation of intestinal cell differentiation in growing pigs is dependent on the fiber source in the diet. Journal of Animal Science, 95(3), 1179-1190. doi: 10.2527/jas.2016.0947
Sekine, A., Akiyama, Y., Yanagihara, K., & Yuasa, Y. (2006). Hath1 up-regulates gastric mucin gene expression in gastric cells. Biochemical and Biophysical Research Communications, 344(4), 1166-1171. doi: 10.1016/j.bbrc.2006.03.238
Sodhi, C. P., Neal, M. D., Siggers, R., Sho, S., Ma, C., … Hackam, D. J. (2012). Intestinal epithelial toll-like receptor 4 regulates goblet cell development and is required for necrotizing enterocolitis in mice. Gastroenterology, 143(3), 708-718. doi: 10.1053/j.gastro.2012.05.053
Tran, D. T., & Hagen, K. G. (2013). Mucin-type O-glycosylation during development. The Journal of Biological Chemistry, 288(10), 6921-6929. doi: 10.1074/jbc.R112.418558
Vila, M.F., Trudeau, M., Hung, Y., Zeng, Z., Urriola, P., ... Saqui-Salces, M. (2018). Dietary fiber sources and non-starch polysaccharide-degrading enzymes modify mucin expression and the immune profile of the swine ileum. PLOS ONE, 13(11), 1-16. doi: 10.1371/journal.pone.0207196
Yamada, T., Hino, S., Iijima, H., Genda, T., Aoki, R., Nagata, R., … Hase, K. (2019). Mucin O-glycans facilitate symbio synthesis to maintain gut immune homeostasis. EBioMedicine, 48, 513-525. doi: 10.1016/j.ebiom.2019.09.008
Zelenakova, L., Angelovicova, M., Snirc, M., Ziarovska, J., Kracmar, S., … Kunova, S. (2019). Frying quality characteristics of rapeseed and sunflower oil used for french fries production. Potravinarstvo Slovak Journal of Food Science, 13(1), 138-149. doi: 10.1007/s11746-009-1417-0
Zhou, L., Fang, L., Sun, Y., Su, Y., & Zhu, W. (2016). Effects of a diet high in resistant starch on fermentation end-products of protein and mucin secretion in the colons of pigs. Starch, 68, 1-7. doi: 10.1002/STAR.201600032
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Articles published in Indonesian Journal Life of Sciences are licensed under a Creative Commons Attribution-ShareAlike 4.0 International license. You are free to copy, transform, or redistribute articles for any lawful purpose in any medium, provided you give appropriate credit to the original author(s) and Indonesian Journal Life of Sciences, link to the license, indicate if changes were made, and redistribute any derivative work under the same license. Copyright on articles is retained by the respective author(s), without restrictions. A non-exclusive license is granted to Indonesian Journal Life of Sciences to publish the article and identify itself as its original publisher, along with the commercial right to include the article in a hardcopy issue for sale to libraries and individuals. By publishing in Indonesian Journal Life of Sciences, authors grant any third party the right to use their article to the extent provided by the Creative Commons Attribution-ShareAlike 4.0 International license.