A Review on Bioethanol Production through the Valorization of Food Waste in Indonesia

  • Tifara Elaine Trisna Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia
  • Jyotsna Jai Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia
  • Deborah Shirleen Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia
  • Ryan Matthew Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia
  • Katherine K Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia
Keywords: Bioethanol, Food Waste, Saccharification, Fermentation, Recovery


Biofuels are one of the numerous alternatives that are currently being considered to replace fossil fuels as it is more environmentally friendly. Specifically, bioethanol is often thought as a better alternative to gasoline fuel as it is considered cleaner, more renewable, and greener as it is synthesized from renewable feedstock which contributes to the reduction of greenhouse gas emissions to the environment. As bioethanol is produced from carbohydrate and starch rich food crops, food waste (FW) poses a potential source for bioethanol production as it is especially rich in carbohydrates and lipids. Bioethanol production itself consists of several steps which includes food waste selection, pretreatment, saccharification and fermentation, and recovery. Cafeteria FW was reviewed to be the best type of FW for bioethanol production as it has the highest carbohydrate and starch content. Subsequently, acid pretreatment was considered to be the best method due to low cost, high yielding, and time efficient method. Moreover, the non-isothermal simultaneous saccharification and fermentation (NSSF)  produces 1.42 g ethanol/L.h with a time of 38 hours. Lastly, the enzyme-assisted extraction technique is most preferred to recover the bioactive compounds as it led to the highest yield of product (94%) compared to other methods. 


Download data is not yet available.

Author Biographies

Tifara Elaine Trisna, Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia

Department of Biotechnology, Institut Bio Scientia Internasional Indonesia

Jyotsna Jai, Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia

Department of Biotechnology, Institut Bio Scientia Internasional Indonesia

Deborah Shirleen, Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia

Department of Biotechnology, Institut Bio Scientia Internasional Indonesia

Ryan Matthew, Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia

Department of Biotechnology, Institut Bio Scientia Internasional Indonesia

Katherine K, Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia

Department of Biotechnology, Institut Bio Scientia Internasional Indonesia


Alamanou, D. G., Malamis, D., Mamma, D., & Kekos, D. (2015). Bioethanol from Dried Household Food Waste Applying Non-isothermal Simultaneous Saccharification and Fermentation at High Substrate Concentration. Waste and Biomass Valorization, 6(3), 353–361. doi:10.1007/s12649-015-9355-6
Almohammed, F., Mhemdi, H., & Vorobiev, E. (2016). Pulsed electric field treatment of sugar beet tails as a sustainable feedstock for bioethanol production. Applied Energy, 162, 49-57. https://doi.org/10.1016/j.apenergy.2015.10.050
Alvira, P., Tomás-Pejó, E., Ballesteros, M., & Negro, M. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresource Technology, 101(13), 4851-4861. doi: 10.1016/j.biortech.2009.11.093
Aro, E. (2015). From first generation biofuels to advanced solar biofuels. Ambio, 45(S1), 24-31. doi: 10.1007/s13280-015-0730-0
Ashokkumar, M., Rink, R., & Shestakov, S. (2011). Hydrodynamic cavitation-an alternative to ultrasonic food processing. Technical Acoustics/Tekhnicheskaya Akustika, (9).
Asl, A., & Khajenoori, M. (2013). Subcritical Water Extraction. Mass Transfer - Advances In Sustainable Energy And Environment Oriented Numerical Modeling. https://doi.org/10.5772/54993
ASTM. (2021). Specification for Denatured Fuel Ethanol for Blending with Gasolines for Use as Automotive Spark-Ignition Engine Fuel. Annual Book Of ASTM Standards, A. S. For Testing And Materials, American Society For Testing And Materials. doi: 10.1520/d4806-21a
Bali, G., Meng, X., Deneff, J., Sun, Q., & Ragauskas, A. (2014). The Effect of Alkaline Pretreatment Methods on Cellulose Structure and Accessibility. Chemsuschem, 8(2), 275-279. doi: 10.1002/cssc.201402752
Barba, F., Parniakov, O., Pereira, S., Wiktor, A., Grimi, N., & Boussetta, N. et al. (2015). Current applications and new opportunities for the use of pulsed electric fields in food science and industry. Food Research International, 77, 773-798. https://doi.org/10.1016/j.foodres.2015.09.015
Bosma, R., van Spronsen, W. A., Tramper, J., & Wijffels, R. H. (2003). Ultrasound, a new separation technique to harvest microalgae. Journal of Applied Phycology, 15(2/3), 143–153. doi:10.1023/a:1023807011027
Bouras, M., Chadni, M., Barba, F., Grimi, N., Bals, O., & Vorobiev, E. (2015). Optimization of microwave-assisted extraction of polyphenols from Quercus bark. Industrial Crops And Products, 77, 590-601. https://doi.org/10.1016/j.indcrop.2015.09.018
Canilha, L., Santos, V. T., Rocha, G. J., Almeida e Silva, J. B., Giulietti, M., Silva, S. S., ... & Carvalho, W. (2011). A study on the pretreatment of a sugarcane bagasse sample with dilute sulfuric acid. Journal of Industrial Microbiology and Biotechnology, 38(9), 1467-1475.
Carrillo-Nieves, D., Alanís, M. J. R., de la Cruz Quiroz, R., Ruiz, H. A., Iqbal, H. M., & Parra-Saldívar, R.
(2019). Current status and future trends of bioethanol production from agro-industrial wastes in Mexico. Renewable and Sustainable Energy Reviews, 102, 63-74.
Chatel, G., J.C. Colmenares, Sonochemistry: from basic principles to innovative applications, Top. Curr. Chem. (Z) 375 (2017) 8.
Chaturvedi, V., & Verma, P. (2013). An overview of key pretreatment processes employed for bioconversion of lignocellulosic biomass into biofuels and value added products. 3 Biotech, 3(5), 415-431.
Chemat, F., Rombaut, N., Sicaire, A., Meullemiestre, A., Fabiano-Tixier, A., & Abert-Vian, M. (2017). Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonics Sonochemistry, 34, 540-560. https://doi.org/10.1016/j.ultsonch.2016.06.035
Chen, H., Fu, X., & Luo, Z. (2015). Properties and extraction of pectin-enriched materials from sugar beet pulp by ultrasonic-assisted treatment combined with subcritical water. Food Chemistry, 168, 302-310. https://doi.org/10.1016/j.foodchem.2014.07.078
Chen, M., Zhao, Y., & Yu, S. (2015). Optimisation of ultrasonic-assisted extraction of phenolic compounds, antioxidants, and anthocyanins from sugar beet molasses. Food Chemistry, 172, 543-550. https://doi.org/10.1016/j.foodchem.2014.09.110
Cheng, Y., Zheng, Y., Yu, C., Dooley, T., Jenkins, B., & VanderGheynst, J. (2010). Evaluation of High Solids Alkaline Pretreatment of Rice Straw. Applied Biochemistry And Biotechnology, 162(6), 1768-1784. doi: 10.1007/s12010-010-8958-4
Clark, J. (2016). Chapter 1. Green and Sustainable Chemistry: An Introduction. Green Chemistry Series, 1-11. https://doi.org/10.1039/9781782625940-00001
Clark, J., Farmer, T., Herrero-Davila, L., & Sherwood, J. (2016). Circular economy design considerations for research and process development in the chemical sciences. Green Chemistry, 18(14), 3914-3934. https://doi.org/10.1039/c6gc00501b
Concha Olmos, J., & Zúñiga Hansen, M. (2012). Enzymatic depolymerization of sugar beet pulp: Production and characterization of pectin and pectic-oligosaccharides as a potential source for functional carbohydrates. Chemical Engineering Journal, 192, 29-36. https://doi.org/10.1016/j.cej.2012.03.085
Dahnum, D., Tasum, S. O., Triwahyuni, E., Nurdin, M., & Abimanyu, H. (2015). Comparison of SHF and SSF Processes Using Enzyme and Dry Yeast for Optimization of Bioethanol Production from Empty Fruit Bunch. Energy Procedia, 68, 107–116. doi:10.1016/j.egypro.2015.03.238
Del Campo, I., Alegría, I., Zazpe, M., Echeverría, M., & Echeverría, I. (2006). Diluted acid hydrolysis pretreatment of agri-food wastes for bioethanol production. Industrial Crops and Products, 24(3), 214–221. doi:10.1016/j.indcrop.2006.06.014
Dias, M., Ensinas, A., Nebra, S., Maciel Filho, R., Rossell, C., & Maciel, M. (2009). Production of bioethanol and other bio-based materials from sugarcane bagasse: Integration to conventional bioethanol production process. Chemical Engineering Research And Design, 87(9), 1206-1216. https://doi.org/10.1016/j.cherd.2009.06.020
Dias, M. O. S., Cunha, M. P., Jesus, C. D. F., Scandiffio, M. I. G., Rossell, C. E. V., Filho, R. M., & Bonomi, A. (2010). Simulation of ethanol production from sugarcane in Brazil: Economic study of an autonomous distillery. Computer Aided Chemical Engineering, 733–738. https://doi.org/10.1016/s1570-7946(10)28123-3
Dias, M., Modesto, M., Ensinas, A., Nebra, S., Filho, R., & Rossell, C. (2011). Improving bioethanol production from sugarcane: evaluation of distillation, thermal integration and cogeneration systems. Retrieved 23 October 2021, from https://doi.org/10.1016/j.energy.2010.09.024.
Dias, M., Junqueira, T., Cavalett, O., Cunha, M., Jesus, C., & Rossell, C. et al. (2012). Integrated versus stand-alone second generation ethanol production from sugarcane bagasse and trash. Bioresource Technology, 103(1), 152-161. https://doi.org/10.1016/j.biortech.2011.09.120
Dussan, K., Silva, D., Moraes, E., Arruda, P., & Felipe, M. (2014). Dilute-acid Hydrolysis of Cellulose to Glucose from Sugarcane Bagasse. Chemical Engineering Transactions, 38, 433-438. doi: 10.3303/CET1438073
Fan, Z., & Lynd, L. R. (2007). Conversion of paper sludge to ethanol. I: Impact of feeding frequency and mixing energy characterization. Bioprocess and biosystems engineering, 30(1), 27-34.
Febrianti, F., Syamsu, K., & Rahayuningsih, M. (2017). Bioethanol production from tofu waste by simultaneous saccharification and fermentation (SSF) using microbial consortium. Chemical Engineering, 8(5).
Fishman, M., Chau, H., Cooke, P., & Hotchkiss Jr., A. (2008). Global Structure of Microwave-Assisted Flash-Extracted Sugar Beet Pectin. Journal Of Agricultural And Food Chemistry, 56(4), 1471-1478. https://doi.org/10.1021/jf072600o
Fixing Food – Towards a More Sustainable Food System. (2017). Retrieved September 26, 2000, from The Economist Intelligence Unit database
Frolkova, A., & Raeva, V. (2010). Bioethanol dehydration: State of the art. Theoretical Foundations Of Chemical Engineering, 44(4), 545-556. https://doi.org/10.1134/s0040579510040342
Gavahian, M., Chu, Y., & Sastry, S. (2018). Extraction from Food and Natural Products by Moderate Electric Field: Mechanisms, Benefits, and Potential Industrial Applications. Retrieved 25 December 2021, from
Gavahian, M., & Farahnaky, A. (2018). Ohmic-assisted hydrodistillation technology: A review. Trends In Food Science & Technology, 72, 153-161. doi: 10.1016/j.tifs.2017.12.014
Gavahian, M., Farahnaky, A., Javidnia, K., & Majzoobi, M. (2012). Comparison of ohmic-assisted hydrodistillation with traditional hydrodistillation for the extraction of essential oils from Thymus vulgaris L. Retrieved 25 December 2021, from
Gavahian, M., Farahnaky, A., Majzoobi, M., Javidnia, K., Saharkhiz, M. J., & Mesbahi, G. (2011). Ohmic-assisted hydrodistillation of essential oils from Zataria multiflora Boiss (Shirazi thyme). International Journal of Food Science and Technology, 46(12), 2619-2627.
Gavahian, M., Farahnaky, A., & Sastry, S. (2016). Multiple effect concentration of ethanol by ohmic-assisted hydrodistillation. Food and Bioproducts Processing, 100(Part A), 85-91. https://doi.org/10.1016/j.fbp.2016.06.002
Gavahian, M., Farahnaky, A., Shavezipur, M., & Sastry, S. (2016). Ethanol concentration of fermented broth by ohmic-assisted hydrodistillation. Innovative Food Science and Emerging Technologies, 35, 45-51. https://doi.org/10.1016/j.ifset.2016.04.001
Gavahian, M., Munekata, P., Eş, I., Lorenzo, J., Mousavi Khaneghah, A., & Barba, F. (2019). Emerging techniques in bioethanol production: from distillation to waste valorization. Green Chemistry, 21(6), 1171-1185. https://doi.org/10.1039/c8gc02698j
Giacometti, J., Bursać Kovačević, D., Putnik, P., Gabrić, D., Bilušić, T., & Krešić, G. et al. (2018). Extraction of bioactive compounds and essential oils from mediterranean herbs by conventional and green innovative techniques: A review. Food Research International, 113, 245-262. https://doi.org/10.1016/j.foodres.2018.06.036
Gil, I., Uyazán, A., Aguilar, J., Rodríguez, G., & Caicedo, L. (2008). Separation of ethanol and water by extractive distillation with salt and solvent as entrainer: process simulation. Brazilian Journal Of Chemical Engineering, 25(1), 207-215. https://doi.org/10.1590/s0104-66322008000100021
Granato, D., Nunes, D., & Barba, F. (2017). An integrated strategy between food chemistry, biology, nutrition, pharmacology, and statistics in the development of functional foods: A proposal. Trends In Food Science & Technology, 62, 13-22. https://doi.org/10.1016/j.tifs.2016.12.010
Grisales Díaz, V., & Olivar Tost, G. (2016). Ethanol and isobutanol dehydration by heat-integrated distillation. Chemical Engineering And Processing: Process Intensification, 108, 117-124. https://doi.org/10.1016/j.cep.2016.07.005
Gustavsson, J. (Ed.). (2011). Global food losses and food waste: Extent, causes and prevention; study conducted for the International Congress Save Food! at Interpack 2011, [16 - 17 May], Düsseldorf, Germany. Food and Agriculture Organization of the United Nations.
Hafid, H. S., Rahman, N. A., Md Shah, U. K., & Baharudin, A. S. (2015). Enhanced fermentable sugar production from kitchen waste using various pretreatments. Journal of Environmental Management, 156, 290–298. doi:10.1016/j.jenvman.2015.03.045
Hashemi, S., Mousavi Khaneghah, A., Koubaa, M., Barba, F., Abedi, E., Niakousari, M., & Tavakoli, J. (2018). Extraction of essential oil from Aloysia citriodora Palau leaves using continuous and pulsed ultrasound: Kinetics, antioxidant activity and antimicrobial properties. Process Biochemistry, 65, 197-204. https://doi.org/10.1016/j.procbio.2017.10.020
Hendriks, A. T. W. M., & Zeeman, G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource technology, 100(1), 10-18.
Hirschnitz-Garbers, M., & Gosens, J. (2015). Producing bio-ethanol from residues and wastes. A technology with enormous potential in need of further research and development. Policy Brief, (2).
Jambo, S. A., Abdulla, R., Mohd Azhar, S. H., Marbawi, H., Gansau, J. A., & Ravindra, P. (2016). A review on third generation bioethanol feedstock. Renewable and Sustainable Energy Reviews, 65, 756–769. doi:10.1016/j.rser.2016.07.064
Jørgensen, H., Kristensen, J. B., & Felby, C. (2007). Enzymatic conversion of lignocellulose into
fermentable sugars: challenges and opportunities. Biofuels, Bioproducts and Biorefining, 1(2), 119-134.
Jugwanth, Y., Sewsynker-Sukai, Y., & Kana, E. G. (2019). Valorization of sugarcane bagasse for
bioethanol production through simultaneous saccharification and fermentation: Optimization and kinetic studies. Fuel, 262, 116552.
Juttuporn, W., Thiengkaew, P., Rodklongtan, A., Rodprapakorn, M., & Chitprasert, P. (2018).
Ultrasound-Assisted Extraction of Antioxidant and Antibacterial Phenolic Compounds from Steam-Exploded Sugarcane Bagasse. Sugar Tech, 20(5), 599-608. https://doi.org/10.1007/s12355-017-0582-y
Karmee, S. K. (2016). Liquid biofuels from food waste: Current trends, prospect and limitation. Renewable and Sustainable Energy Reviews, 53, 945–953. https://doi.org/10.1016/j.rser.2015.09.041
Karmee, S. K., & Lin, C. S. K. (2014). Valorisation of food waste to biofuel: Current trends and technological challenges. Sustainable Chemical Processes, 2(1), 22. https://doi.org/10.1186/s40508-014-0022-1
Karmee, S. K., & Chadha, A. (2005). Preparation of biodiesel from crude oil of Pongamia pinnata. Bioresource technology, 96(13), 1425–1429. https://doi.org/10.1016/j.biortech.2004.12.011
Kavitha, s., Kannah R, Y., M, G., Banu J, R., & Kumar, G. (2020). Rhamnolipid induced deagglomeration of anaerobic granular biosolids for energetically feasible ultrasonic homogenization and profitable biohydrogen. International Journal of Hydrogen Energy, 45(10), 5890–5899. https://doi.org/10.1016/j.ijhydene.2019.04.063
Khanal, S. K., Montalbo, M., Van Leeuwen, J., Srinivasan, G., & Grewell, D. (2007). Ultrasound enhanced glucose release from corn in ethanol plants. Biotechnology and bioengineering, 98(5), 978-985.
Kissa, A., & Suszwalak, D. (2012). Efficient Bioethanol Dehydration in Azeotropic and Extractive Dividing-wall Columns. Procedia Engineering, 42, 566-572. https://doi.org/10.1016/j.proeng.2012.07.449
Koubaa, M., Mhemdi, H., Barba, F., Roohinejad, S., Greiner, R., & Vorobiev, E. (2016). Oilseed treatment by ultrasounds and microwaves to improve oil yield and quality: An overview. Food Research International, 85, 59-66. https://doi.org/10.1016/j.foodres.2016.04.007
Kumar, A., Schreiter, I. J., Wefer-Roehl, A., Tsechansky, L., Schüth, C., & Graber, E. R. (2016). Production
and Utilization of Biochar From Organic Wastes for Pollutant Control on Contaminated Sites. In Environmental Materials and Waste (pp. 91–116). Elsevier. https://doi.org/10.1016/B978-0-12-803837-6.00005-6
Kumar, A. K., & Sharma, S. (2017). Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresources and bioprocessing, 4(1), 7. https://doi.org/10.1186/s40643-017-0137-9
Kumar, R., Mago, G., Balan, V., & Wyman, C. E. (2009). Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies. Bioresource technology, 100(17), 3948-3962.
Kuna, E., Behling, R., Valange, S., Chatel, G., & Colmenares, J. C. (2017). Sonocatalysis: a potential sustainable pathway for the valorization of lignocellulosic biomass and derivatives. Chemistry and Chemical Technologies in Waste Valorization, 1-20.
Li, H., Chen, X., Wang, C., Sun, S., & Sun, R. (2016). Evaluation of the two-step treatment with ionic liquids and alkali for enhancing enzymatic hydrolysis of Eucalyptus: chemical and anatomical changes. Biotechnology For Biofuels, 9(1). https://doi.org/10.1186/s13068-016-0578-y
Li, J., Si, X., Li, X., Wang, N., An, Q., & Ji, S. (2018). Preparation of acid-resistant PEI/SA composite membranes for the pervaporation dehydration of ethanol at low pH. Separation And Purification Technology, 192, 205-212. https://doi.org/10.1016/j.seppur.2017.09.038
Li, X., Mettu, S., Martin, G., Ashokkumar, M., & Lin, C. (2019). Ultrasonic pretreatment of food waste to accelerate enzymatic hydrolysis for glucose production. Ultrasonics Sonochemistry, 53, 77-82. doi: 10.1016/j.ultsonch.2018.12.035
Liguori, R., Soccol, C., Porto de Souza Vandenberghe, L., Woiciechowski, A., & Faraco, V. (2015). Second Generation Ethanol Production from Brewers’ Spent Grain. Energies, 8(4), 2575-2586. https://doi.org/10.3390/en8042575

Liu, J., Chen, J., Zhan, X., Fang, M., Wang, T., & Li, J. (2015). Preparation and characterization of ZSM-5/PDMS hybrid pervaporation membranes: Laboratory results and pilot-scale performance. Separation And Purification Technology, 150, 257-267. https://doi.org/10.1016/j.seppur.2015.06.036
Loizidou, M., Alamanou, D. G., Sotiropoulos, A., Lytras, C., Mamma, D., Malamis, D., & Kekos, D.
(2017). Pilot scale system of two horizontal rotating bioreactors for bioethanol production from household food waste at high solid concentrations. Waste and biomass valorization, 8(5), 1709-1719.
Marić, M., Grassino, A., Zhu, Z., Barba, F., Brnčić, M., & Rimac Brnčić, S. (2018). An overview of the
traditional and innovative approaches for pectin extraction from plant food wastes and by-products: Ultrasound-, microwaves-, and enzyme-assisted extraction. Trends In Food Science & Technology, 76, 28-37. https://doi.org/10.1016/j.tifs.2018.03.022
Ministry of Environment and Forestry. (2018). Pengelolaan Sampah Sektor Lingkungan Hidup dan
Misra, N., Koubaa, M., Roohinejad, S., Juliano, P., Alpas, H., & Inácio, R. et al. (2017). Landmarks in the
historical development of twenty first century food processing technologies. Food Research International, 97, 318-339. https://doi.org/10.1016/j.foodres.2017.05.001
Misra, N., Martynenko, A., Chemat, F., Paniwnyk, L., Barba, F., & Jambrak, A. (2017). Thermodynamics,
transport phenomena, and electrochemistry of external field-assisted nonthermal food technologies. Critical Reviews In Food Science And Nutrition, 58(11), 1832-1863. https://doi.org/10.1080/10408398.2017.1287660
O’Brien, D., Roth, L., & McAloon, A. (2000). Ethanol production by continuous fermentation–pervaporation: a preliminary economic analysis. Journal Of Membrane Science, 166(1), 105-111. https://doi.org/10.1016/s0376-7388(99)00255-0
Olujić, Ž., Jödecke, M., Shilkin, A., Schuch, G., & Kaibel, B. (2009). Equipment improvement trends in distillation. Chemical Engineering And Processing: Process Intensification, 48(6), 1089-1104. https://doi.org/10.1016/j.cep.2009.03.004
Parniakov, O., Barba, F., Grimi, N., Lebovka, N., & Vorobiev, E. (2014). Impact of pulsed electric fields and high voltage electrical discharges on extraction of high-added value compounds from papaya peels. Food Research International, 65, 337-343. https://doi.org/10.1016/j.foodres.2014.09.015
Peng, X., Mu, T., Zhang, M., Sun, H., Chen, J., & Yu, M. (2014). Optimisation of production yield by ultrasound-/microwave-assisted acid method and functional property of pectin from sugar beet pulp. International Journal Of Food Science & Technology, 50(3), 758-765. https://doi.org/10.1111/ijfs.12678
Prasoulas, G., Gentikis, A., Konti, A., Kalantzi, S., Kekos, D., & Mamma, D. (2020). Bioethanol Production from Food Waste Applying the Multienzyme System Produced On-Site by Fusarium oxysporum F3 and Mixed Microbial Cultures. Fermentation, 6(2), 39. doi: 10.3390/fermentation6020039
Puértolas, E., & Barba, F. (2016). Electrotechnologies applied to valorization of by-products from food industry: Main findings, energy and economic cost of their industrialization. Food And Bioproducts Processing, 100, 172-184. https://doi.org/10.1016/j.fbp.2016.06.020

Puértolas, E., Koubaa, M., & Barba, F. (2016). An overview of the impact of electrotechnologies for the recovery of oil and high-value compounds from vegetable oil industry: Energy and economic cost implications. Food Research International, 80, 19-26. https://doi.org/10.1016/j.foodres.2015.12.009
Puri, M., Sharma, D., & Barrow, C. (2012). Enzyme-assisted extraction of bioactives from plants. Trends In Biotechnology, 30(1), 37-44. https://doi.org/10.1016/j.tibtech.2011.06.014
Putnik, P., Bursać Kovačević, D., Režek Jambrak, A., Barba, F., Cravotto, G., & Binello, A. et al. (2017). Innovative “Green” and Novel Strategies for the Extraction of Bioactive Added Value Compounds from Citrus Wastes—A Review. Molecules, 22(5), 680. https://doi.org/10.3390/molecules22050680
Qureshi, N., Hughes, S., Maddox, I., & Cotta, M. (2005). Energy-efficient recovery of butanol from model solutions and fermentation broth by adsorption. Bioprocess And Biosystems Engineering, 27(4), 215-222. https://doi.org/10.1007/s00449-005-0402-8
Rastogi, M., & Shrivastava, S. (2017). Recent advances in second generation bioethanol production: An insight to pretreatment, saccharification and fermentation processes. Renewable and Sustainable Energy Reviews, 80, 330–340. doi:10.1016/j.rser.2017.05.225
Roselló-Soto, E., Galanakis, C., Brnčić, M., Orlien, V., Trujillo, F., & Mawson, R. et al. (2015). Clean recovery of antioxidant compounds from plant foods, by-products and algae assisted by ultrasounds processing. Modeling approaches to optimize processing conditions. Trends In Food Science & Technology, 42(2), 134-149. https://doi.org/10.1016/j.tifs.2015.01.002
Roselló-Soto, E., Parniakov, O., Deng, Q., Patras, A., Koubaa, M., & Grimi, N. et al. (2016). Application of Non-conventional Extraction Methods: Toward a Sustainable and Green Production of Valuable Compounds from Mushrooms. Food Engineering Reviews, 8(2), 214-234. https://doi.org/10.1007/s12393-015-9131-1
Roselló-Soto, E., Poojary, M., Barba, F., Lorenzo, J., Mañes, J., & Moltó, J. (2018). Tiger nut and its by-products valorization: From extraction of oil and valuable compounds to development of new healthy products. Innovative Food Science & Emerging Technologies, 45, 306-312. https://doi.org/10.1016/j.ifset.2017.11.016
Ruane, J., Sonnino, A., & Agostini, A. (2010). Bioenergy and the potential contribution of agricultural biotechnologies in developing countries. Biomass and Bioenergy, 34(10), 1427–1439. doi:10.1016/j.biombioe.2010.04.01
Ryan, L., Convery, F., & Ferreira, S. (2006). Stimulating the use of biofuels in the European Union: Implications for climate change policy. Energy Policy, 34(17), 3184–3194. https://doi.org/10.1016/j.enpol.2005.06.010
Saeed, M. A., Ma, H., Yue, S., Wang, Q., & Tu, M. (2018). Concise review on ethanol production from food waste: development and sustainability. Environmental Science and Pollution Research, 25(29), 28851-28863.
Sabiha-Hanim, S., Norazlina, I., Noraishah, A., & Suhaila, M. (2012). Reducing sugar production from oil palm fronds and rice straw by acid hydrolysis. 2012 IEEE Colloquium On Humanities, Science And Engineering (CHUSER). doi: 10.1109/chuser.2012.6504391
Sabiha-Hanim, S., & Asyikin Abd Halim, N. (2019). Sugarcane Bagasse Pretreatment Methods for Ethanol Production. Fuel Ethanol Production From Sugarcane. doi: 10.5772/intechopen.81656
Şahin, S., Samli, R., Tan, A., Barba, F., Chemat, F., Cravotto, G., & Lorenzo, J. (2017). Solvent-Free Microwave-Assisted Extraction of Polyphenols from Olive Tree Leaves: Antioxidant and Antimicrobial Properties. Molecules, 22(7), 1056. https://doi.org/10.3390/molecules22071056
Sato, N., Takano, Y., Mizuno, M., Nozaki, K., Umemura, S., & Matsuzawa, T. et al. (2013). Production of feruloylated arabino-oligosaccharides (FA-AOs) from beet fiber by hydrothermal treatment. The Journal Of Supercritical Fluids, 79, 84-91. https://doi.org/10.1016/j.supflu.2013.01.012
Segovia-Hernandez, J., & Mendoza-Pedroza, J. (2018). Alternative Schemes for the Purification of Bioethanol: A Comparative Study. Recent Advances In Petrochemical Science, 4(2). https://doi.org/10.19080/rapsci.2018.04.555631
Shaheen, S. A., & Lipman, T. E. (2007). Reducing Greenhouse Emissions and Fuel Consumption. IATSS Research, 31(1), 6–20. https://doi.org/10.1016/S0386-1112(14)60179-5
Shankar Tumuluru, J., Sokhansanj, S., Hess, J., Wright, C., & Boardman, R. (2011). REVIEW: A review on biomass torrefaction process and product properties for energy applications. Industrial Biotechnology, 7(5), 384-401. https://doi.org/10.1089/ind.2011.7.384
Sindhu, R., Binod, P., Pandey, A., Ankaram, S., Duan, Y., & Awasthi, M. (2019). Biofuel Production From Biomass. Current Developments In Biotechnology And Bioengineering, 79-92. https://doi.org/10.1016/b978-0-444-64083-3.00005-1
Soave, G., & Feliu, J. (2002). Saving energy in distillation towers by feed splitting. Applied Thermal Engineering, 22(8), 889-896. https://doi.org/10.1016/s1359-4311(02)00006-6
Song, Y., Oh, C., & Bae, H. (2017). Simultaneous production of bioethanol and value-added d-psicose from Jerusalem artichoke (Helianthus tuberosus L.) tubers. Bioresource Technology, 244, 1068-1072. https://doi.org/10.1016/j.biortech.2017.08.079
Tavan, Y., & Shahhosseini, S. (2016). Feed-Splitting as Energy-Saving Technique in the Heterogeneous
Distillation of Ethanol-Water Azeotropes. Energy Technology, 4(3), 424–428. https://doi.org/10.1002/ente.201500287
Triwahyuni, E., Hariyanti, S., Dahnum, D., Nurdin, M., & Abimanyu, H. (2015). Optimization of
saccharification and fermentation process in bioethanol production from oil palm fronds. Procedia Chemistry, 16, 141-148.
Uçkun Kiran, E., & Liu, Y. (2015). Bioethanol production from mixed food waste by an effective enzymatic pretreatment. Fuel, 159, 463–469. doi:10.1016/j.fuel.2015.06.101
Ueno, K., Negishi, H., Okuno, T., Tawarayama, H., Ishikawa, S., & Miyamoto, M. et al. (2019). Effects of Silica-Particle Coating on a Silica Support for the Fabrication of High-Performance Silicalite-1 Membranes by Gel-Free Steam-Assisted Conversion. Membranes, 9(4), 46. https://doi.org/10.3390/membranes9040046
Unlu, D., & Durmaz Hilmioglu, N. (2016). Fuel bio additive production by chitosan/sulfosuccinic acid catalytic membrane. Energy Sources, Part A: Recovery, Utilization, And Environmental Effects, 38(24), 3606-3611. https://doi.org/10.1080/15567036.2016.1166166
Vane, L., Alvarez, F., Huang, Y., & Baker, R. (2009). Experimental validation of hybrid distillation-vapor permeation process for energy efficient ethanol-water separation. Journal Of Chemical Technology & Biotechnology, n/a-n/a. https://doi.org/10.1002/jctb.2318
Vane, L., Alvarez, F., Rosenblum, L., & Govindaswamy, S. (2012). Efficient Ethanol Recovery from Yeast Fermentation Broth with Integrated Distillation–Membrane Process. Industrial & Engineering Chemistry Research, 52(3), 1033-1041. https://doi.org/10.1021/ie2024917
Vilkhu, K., Mawson, R., Simons, L., & Bates, D. (2008). Applications and opportunities for ultrasound assisted extraction in the food industry — A review. Innovative Food Science & Emerging Technologies, 9(2), 161-169. https://doi.org/10.1016/j.ifset.2007.04.014
Wang, F., Jiang, Y., Guo, W., Niu, K., Zhang, R., Hou, S., ... & Fang, X. (2016). An environmentally friendly and productive process for bioethanol production from potato waste. Biotechnology for biofuels, 9(1), 1-10.
Wang, Z., Ning, P., Hu, L., Nie, Q., Liu, Y., Zhou, Y., & Yang, J. (2020). Efficient ethanol production from
paper mulberry pretreated at high solid loading in Fed-nonisothermal-simultaneous saccharification and fermentation. Renewable Energy, 160, 211-219.
Wei, H.-J., Tsai, T.-Y., & Weng, Y.-H. (2016). Pilot-scale study on dehydration of synthetic and
lignocellulosic ethanol by NAA membrane. Korean Journal of Chemical Engineering, 33(4), 1362–1368. https://doi.org/10.1007/s11814-015-0228-2
Yi, S., & Wan, Y. (2017). Separation performance of novel vinyltriethoxysilane
(VTES)-g-silicalite-1/PDMS/PAN thin-film composite membrane in the recovery of bioethanol from fermentation broths by pervaporation. Journal Of Membrane Science, 524, 132-140. https://doi.org/10.1016/j.memsci.2016.11.037
Yuan, J., Li, Y., Zhang, H., Zhang, D., Chadwick, D., Li, G., Wang, G., Chi, M., & Yang, F. (2018). Effects of adding bulking agents on the biodrying of kitchen waste and the odor emissions produced. Journal of Environmental Sciences, 67, 344–355. https://doi.org/10.1016/j.jes.2017.08.014
Yukesh Kannah, R., Merrylin, J., Poornima Devi, T., Kavitha, S., Sivashanmugam, P., Kumar, G., & Rajesh Banu, J. (2020). Food waste valorization: Biofuels and value added product recovery. Bioresource Technology Reports, 11, 100524. doi: 10.1016/j.biteb.2020.100524
Zhao, X., Zhou, Y., & Liu, D. (2012). Kinetic model for glycan hydrolysis and formation of monosaccharides during dilute acid hydrolysis of sugarcane bagasse. Bioresource Technology, 105, 160-168.
Zhu, Z., Li, S., He, J., Thirumdas, R., Montesano, D., & Barba, F. (2018). Enzyme-assisted extraction of polyphenol from edible lotus (Nelumbo nucifera) rhizome knot: Ultra-filtration performance and HPLC-MS2 profile. Food Research International, 111, 291-298. https://doi.org/10.1016/j.foodres.2018.05.047
Zhu, Z., Zhang, R., Zhan, S., He, J., Barba, F., & Cravotto, G. et al. (2017). Recovery of Oil with Unsaturated Fatty Acids and Polyphenols from Chaenomelessinensis (Thouin) Koehne: Process Optimization of Pilot-Scale Subcritical Fluid Assisted Extraction. Molecules, 22(10), 1788. https://doi.org/10.3390/molecules22101788
Zykwinska, A., Boiffard, M., Kontkanen, H., Buchert, J., Thibault, J., & Bonnin, E. (2008). Extraction of Green Labeled Pectins and Pectic Oligosaccharides from Plant Byproducts. Journal Of Agricultural And Food Chemistry, 56(19), 8926-8935. https://doi.org/10.1021/jf801705a
How to Cite
Trisna, T., Jai, J., Shirleen, D., Matthew, R., & K, K. (2022). A Review on Bioethanol Production through the Valorization of Food Waste in Indonesia. Indonesian Journal of Life Sciences, 4(2), 60-86. https://doi.org/https://doi.org/10.54250/ijls.v4i2.139
Bio-product and Services for Sustainable Society