Inulin-producing Genes in Gembili (Dioscorea esculenta) and Future Applications for Food Industries in Indonesia

  • Ihsan Tria Pramanda Indonesia International Institute for Life Sciences
  • Dellamartha Anjani Indonesia International Institute for Life Sciences
  • Gili Heriawan Indonesia International Institute for Life Sciences
Keywords: 1-SST, Inulin, Gembili, fructans

Abstract

Inulin can be found in abundance in nature, this form of carbohydrate (fructans) is utilized by plants as an energy storage and possibly for other uses. Human use inulin as a dietary fiber and prebiotics to improve the health of their digestive system or to improve the physicochemical and sensory properties of foods. Gembili (Dioscorea esculenta) is a type of yam that grows well in Indonesia and contains inulin up to 14.77% of its dry weight. The current state of inulin production utilizes conventional extraction from tubers; thus, the demands of the market cannot be satisfied, and the price skyrocketed. Biotechnological approaches such as incorporating genes that encodes the enzymes involved in inulin biosynthesis into bacteria or yeasts can be exploited to improve the yield and sustainability. The biosynthesis of inulin involves three main genes 1-SST, 6-SFT and 1-FFT. Genetic information of the gene responsible for the biosynthesis of inulin in Gembili needs to be elucidated.

Downloads

Download data is not yet available.

Author Biographies

Ihsan Tria Pramanda, Indonesia International Institute for Life Sciences

Department of Biotechnology, Indonesia International Institute for Life-Sciences (i3L), Jakarta, Indonesia.

Dellamartha Anjani, Indonesia International Institute for Life Sciences

Department of Biotechnology, Indonesia International Institute for Life-Sciences (i3L), Jakarta, Indonesia

Gili Heriawan, Indonesia International Institute for Life Sciences

Department of Biotechnology, Indonesia International Institute for Life-Sciences (i3L), Jakarta, Indonesia.

References

Ávila-Fernández, Á., Olvera-Carranza, C., Rudiño-Piñera, E., Cassab, G. I., Nieto-Sotelo, J., & López-Munguía, A. (2007). Molecular characterization of sucrose: sucrose 1-fructosyltransferase (1-SST) from Agave tequilana Weber var. azul. Plant Science, 173(4), 478–486. https://doi.org/10.1016/j.plantsci.2007.07.009
Badan Pusat Statistik. (2022). Bps.Go.Id. Retrieved March 10, 2022, from https://www.bps.go.id/exim/
Barclay, T., Ginic-Markovic, M., Cooper, P., & Petrovsky, N. (2010). Inulin: A versatile polysaccharide with multiple pharmaceutical and food chemical uses. J Excipients Food Chem, 1(3), 27–50. http://doi.org/10.1021/jf030383v
Bindels, L. B., Delzenne, N. M., Cani, P. D., & Walter, J. (2015). Towards a more comprehensive concept for prebiotics. Nature Reviews. Gastroenterology & Hepatology, 12(5), 303–310. https://doi.org/10.1038/nrgastro.2015.47
Carlson, J. L., Erickson, J. M., Lloyd, B. B., & Slavin, J. L. (2018). Health effects and sources of prebiotic dietary fiber. Current Developments in Nutrition, 2(3), nzy005. https://doi.org/10.1093/cdn/nzy005
De Roover, J., Vandenbranden, Van Laere, A., & Van den Ende, W. (2000). Drought induces fructan synthesis and 1-SST (sucrose:sucrose fructosyltransferase) in roots and leaves of chicory seedlings (Cichorium intybus L.). Planta, 210(5), 808–814. https://doi.org/10.1007/s004250050683
Dewanti, F. K. (2013). Substitusi Inulin Umbi Gembili (Dioscorea Esculenta) pada Produk Es Krim Sebagai Alternatif Produk Makanan Tinggi Serat dan Rendah Lemak. Universitas Diponegoro. Retrieved from http://eprints.undip.ac.id/41812/1/546_FANNY_KARINA_DEWANTI_G2C009006.pdf
Dhingra, D., Michael, M., Rajput, H., & Patil, R. T. (2012). Dietary fibre in foods: a review. Journal of Food Science and Technology, 49(3), 255–266. https://doi.org/10.1007/s13197-011-0365-5
Edelman, J., & Jefford, T. G. (1968). The Mechanisim of Fructosan Metabolism in Higher Plants as Exemplified in Helianthus tuberosus. New Phytologist, 67(3), 517–531. https://doi.org/10.1111/j.1469-8137.1968.tb05480.x
Moghadam, B. E., Keivaninahr, F., Fouladi, M., Mokarram, R. R., & Nazemi, A. (2019). Inulin addition to yoghurt: Prebiotic activity, health effects and sensory properties. International Journal of Dairy Technology, 72(2), 183–198. https://doi.org/10.1111/1471-0307.12579
Evans, C. E. L. (2020). Dietary fibre and cardiovascular health: a review of current evidence and policy. The Proceedings of the Nutrition Society, 79(1), 61–67. https://doi.org/10.1017/S0029665119000673
Gibson, G. R., Beatty, E. R., Wang, X., & Cummings, J. H. (1995). Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin. Gastroenterology, 108(4), 975–982. https://doi.org/10.1016/0016-5085(95)90192-2
Glibowski, P., & Bukowska, A. (2011). The Effect of pH, Temperature and Heating Time on Inulin Chemical Stability. Acta Sci. Pol., Technol. Aliment, 10(2), 189–196. Retrieved from www.food.actapol.net
Halewood, M., Chiurugwi, T., Sackville Hamilton, R., Kurtz, B., Marden, E., Welch, E., Michiels, F., Mozafari, J., Sabran, M., Patron, N., Kersey, P., Bastow, R., Dorius, S., Dias, S., McCouch, S., & Powell, W. (2018). Plant genetic resources for food and agriculture: opportunities and challenges emerging from the science and information technology revolution. The New Phytologist, 217(4), 1407–1419. https://doi.org/10.1111/nph.14993
Heriawan, G., Anjani, D., Devanthi, P. V. P., Kemal, R. A., & Jessica, P. (2020). Primer design for isolation of sucrose:Sucrose 1-fructosyltransferase (1-SST) gene from gembili (Dioscorea esculenta). KnE Life Sciences. https://doi.org/10.18502/kls.v5i2.6445
Hussain, S., Jõudu, I., & Bhat, R. (2020). Dietary fiber from underutilized plant resources—A positive approach for valorization of fruit and vegetable wastes. Sustainability, 12(13), 5401. https://doi.org/10.3390/su12135401
Inkwood Research. (2017). Global Inulin Market Forecast 2018-2026. Retrieved January 13, 2019, from https://www.inkwoodresearch.com/reports/inulin-market/
Iraporda, C., Rubel, I. A., Manrique, G. D., & Abraham, A. G. (2019). Influence of inulin rich carbohydrates from Jerusalem artichoke (Helianthus tuberosus L.) tubers on probiotic properties of Lactobacillus strains. Lebensmittel-Wissenschaft Und Technologie [Food Science and Technology], 101, 738–746. https://doi.org/10.1016/j.lwt.2018.11.074
Karimi, A. A., Naghavi, M. R., Peyghambari, S. A., & Rasoulnia, A. (2021). Inulin content and expression of related genes in different tissues and cell suspension culture of Taraxacum kok-saghyz. In Vitro Cellular & Developmental Biology. Plant: Journal of the Tissue Culture Association. https://doi.org/10.1007/s11627-021-10180-6
Kawakami, A., & Yoshida, M. (2002). Molecular Characterization of Sucrose:Sucrose 1-Fructosyltransferase and Sucrose:Fructan 6-Fructosyltransferase Associated with Fructan Accumulation in Winter Wheat during Cold Hardening. Bioscience, Biotechnology, and Biochemistry, 66(11), 2297–2305. https://doi.org/10.1271/bbb.66.2297
Kawakami, A., Sato, Y., & Yoshida, M. (2008). Genetic engineering of rice capable of synthesizing fructans and enhancing chilling tolerance. Journal of Experimental Botany, 59(4), 793–802. https://doi.org/10.1093/jxb/erm367
Laere, A. Van, & Ende, W. Van den. (2002). Inulin metabolism in dicots: Chicory as a model system. Plant, Cell and Environment, 25(6), 803–813. http://doi.org/10.1046/j.1365-3040.2002.00865.x
Maroufi, A., Karimi, M., Mehdikhanlou, K., & De Loose, M. (2018). Inulin chain length modification using a transgenic approach opening new perspectives for chicory. 3 Biotech, 8(8), 349. http://doi.org/10.1007/s13205-018-1377-x
McRorie, J. W., Jr, & McKeown, N. M. (2017). Understanding the physics of functional fibers in the gastrointestinal tract: An evidence-based approach to resolving enduring misconceptions about insoluble and soluble fiber. Journal of the Academy of Nutrition and Dietetics, 117(2), 251–264. https://doi.org/10.1016/j.jand.2016.09.021
Mensink, M. A., Frijlink, H. W., van der Voort Maarschalk, K., & Hinrichs, W. L. J. (2015). Inulin, a flexible oligosaccharide I: Review of its physicochemical characteristics. Carbohydrate Polymers, 130, 405–419. http://doi.org/10.1016/J.CARBPOL.2015.05.026
Moon, K.-B., Ko, H., Park, J.-S., Sohn, J.-H., Cho, H.-S., Park, Y.-I., Kim, H.-S., & Jeon, J.-H. (2019). Expression of Jerusalem artichoke (Helianthus tuberosus L.) fructosyltransferases, and high fructan accumulation in potato tubers. Applied Biological Chemistry, 62(1). https://doi.org/10.1186/s13765-019-0481-x
Myhrstad, M. C. W., Tunsjø, H., Charnock, C., & Telle-Hansen, V. H. (2020). Dietary fiber, gut Microbiota, and metabolic regulation-current status in human randomized trials. Nutrients, 12(3), 859. https://doi.org/10.3390/nu12030859
Nagaraj, V. J., Altenbach, D., Galati, V., Lüscher, M., Meyer, A. D., Boller, T., & Wiemken, A. (2004). Distinct regulation of sucrose: sucrose-1-fructosyltransferase (1-SST) and sucrose: fructan-6-fructosyltransferase (6-SFT), the key enzymes of fructan synthesis in barley leaves: 1-SST as the pacemaker. New Phytologist, 161(3), 735–748. https://doi.org/10.1111/j.1469-8137.2004.00995.x
Öztürk, B. (2016). a Rising Star Prebiotic Dietary Fiber: Inulin and Recent Applications in Meat Products. Journal of Food and Health Science, 3(1), 12–20. http://doi.org/10.3153/JFHS17002
Putri, D. N., Haqqyana, H., Purwanti, L., Azizah, N., & Astuty, R. M. (2017). BALI (Beras Analog Umbi Gembili): The Utilization of Gembili Tuber (Dioscorea esculenta) as The Raw Material for Rice Analogue Production. UI Proceedings on Science and Technology, 1(0). Retrieved from http://proceedings.ui.ac.id/index.php/uipst/article/view/122
Ridarineni, N. (2015). Inulin dari Gembili akan Jadi Produk Unggulan DIY. Retrieved November 25, 2018, from https://www.republika.co.id/berita/nasional/daerah/15/03/19/nlgblu-inulin-dari-gembili-akan-jadi-produk-unggulan-diy
Sévenier, R., Hall, R. D., van der Meer, I. M., Hakkert, H. J., van Tunen, A. J., & Koops, A. J. (1998). High level fructan accumulation in a transgenic sugar beet. Nature Biotechnology, 16(9), 843–846. https://doi.org/10.1038/nbt0998-843
Shoaib, M., Shehzad, A., Omar, M., Rakha, A., Raza, H., Sharif, H. R., Shakeel, A., Ansari, A., & Niazi, S. (2016). Inulin: Properties, health benefits and food applications. Carbohydrate Polymers, 147, 444–454. https://doi.org/10.1016/j.carbpol.2016.04.020
Swann, O. G., Kilpatrick, M., Breslin, M., & Oddy, W. H. (2020). Dietary fiber and its associations with depression and inflammation. Nutrition Reviews, 78(5), 394–411. https://doi.org/10.1093/nutrit/nuz072
Ueno, K., Sonoda, T., Yoshida, M., Kawakami, A., Shiomi, N., & Onodera, S. (2020). Decreased expression of fructosyltransferase genes in asparagus roots may contribute to efficient fructan degradation during asparagus spear harvesting. Plant Physiology and Biochemistry, 156, 192–200. https://doi.org/10.1016/j.plaphy.2020.09.007
United States Food and Drug Administration. (2018). The Declaration of Certain Isolated or Synthetic Non-Digestible Carbohydrates as Dietary Fiber on Nutrition and Supplement Facts Labels; Guidance for Industry; Availability. Retrieved from https://www.fda.gov/FoodGuidances
van Arkel, J. (2013). Fructan biosynthesis in crop plants. Retrieved from http://edepot.wur.nl/276256
Van den Ende, W., Michiels, A., Van Wonterghem, D., Vergauwen, R., & Van Laere, A. (2000). Cloning, developmental, and tissue-specific expression of sucrose:sucrose 1-fructosyl transferase from Taraxacum officinale. Fructan localization in roots. Plant Physiology, 123(1), 71–80. https://doi.org/10.1104/PP.123.1.71
Winarti, S., & Saputro, E. A. (2013). Karakteristik Tepung Prebiotik Umbi Uwi (Dioscorea spp). Jurnal Teknik Kimia, 8. Retrieved from http://eprints.upnjatim.ac.id/4871/1/4_erwan_(_belum_revisi_).pdf
Winarti, S., Harmayani, E., & Nurismanto, R. (2012). Karakteristik dan Profil Inulin Beberapa Jenis Uwi (Dioscorea spp.). AgriTECH, 31(4). https://doi.org/10.22146/agritech.9647
Zhu, Y., Chu, J., Lu, Z., Lv, F., Bie, X., Zhang, C., & Zhao, H. (2018). Physicochemical and functional properties of dietary fiber from foxtail millet (Setaria italic) bran. Journal of Cereal Science, 79, 456–461. https://doi.org/10.1016/j.jcs.2017.12.011
Zhu, Z., He, J., Liu, G., Barba, F. J., Koubaa, M., Ding, L., Bals, O., Grimi, N., & Vorobiev, E. (2016). Recent insights for the green recovery of inulin from plant food materials using non-conventional extraction technologies: A review. Innovative Food Science & Emerging Technologies: IFSET: The Official Scientific Journal of the European Federation of Food Science and Technology, 33, 1–9. https://doi.org/10.1016/j.ifset.2015.12.023
Zubaidah, E., & Akhadiana, W. (2013). Comparative Study of Inulin Extracts from Dahlia, Yam, and Gembili Tubers as Prebiotic. Food and Nutrition Sciences, 4, 8–12. http://doi.org/10.4236/fns.2013.411A002
Published
2022-03-31
How to Cite
Pramanda, I., Anjani, D., & Heriawan, G. (2022). Inulin-producing Genes in Gembili (Dioscorea esculenta) and Future Applications for Food Industries in Indonesia. Indonesian Journal of Life Sciences, 4(1), 129-154. https://doi.org/https://doi.org/10.54250/ijls.v4i1.133
Section
Indonesian Journal of Life Sciences