Bioprocessing of Avian Influenza VLP Vaccine using Baculovirus-Insect Cell Expression System

  • Matthew Chrisdianto Indonesia International Institute for Life Sciences
  • Fedric Intan Damai Indonesia International Institute for Life Sciences
  • Roselyn Mulyono Indonesia International Institute for Life Sciences
  • Jesslyn Audrey Virginia Indonesia International Institute for Life Sciences
  • Katherine K, PhD Indonesia International Institute for Life Sciences
Keywords: bioprocessing, virus-like particles, baculovirus-insect cell expression system, avian influenza, vaccine

Abstract

Vaccines are widely used as a preventive measure against influenza virus infection. However, these vaccines gain concerns regarding their biosafety due to implementing the highly pathogenic avian influenza in the production process. A breakthrough that uses insect cells due to their ability to produce protein rapidly, especially viral antigens for the potential avian influenza outbreak, is being extensively researched. Insect cells infected by baculovirus (BV) are utilized to express proteins known as virus-like protein (VLP). The objective of this review is to assess the production of the avian influenza vaccine (i.e., H5N1 and H7N9 strains) made from VLP by utilizing a baculovirus-insect cell (BV-IC) expression system. A narrative review was conducted by screening international indexed journals from the last 10 years about the topic. The result shows that VLP vaccine development using BV-IC expression can be a cheaper and safer alternative to conventional vaccines while also producing a high yield. The upstream process consists of the IC infection by the BV and BV-IC cell cultivation inside the bioreactor. The downstream process consists of the purification of the VLP product until it becomes a functioning vaccine. The VLP vaccine has improved immunogenic quality, enabling a more specific immune response than other vaccines. However, studies performed on avian influenza vaccines produced by the BV-IC expression system are still lacking. Therefore, further studies are required to improve the current VLP vaccine production processes.

Downloads

Download data is not yet available.

Author Biographies

Matthew Chrisdianto, Indonesia International Institute for Life Sciences

Department of Biotechnology, Indonesia International Institute for Life Sciences (I3L), Jakarta, Indonesia.

Fedric Intan Damai, Indonesia International Institute for Life Sciences

Department of Biotechnology, Indonesia International Institute for Life Sciences, Jakarta, Indonesia

Roselyn Mulyono, Indonesia International Institute for Life Sciences

Department of Biotechnology, Indonesia International Institute for Life Sciences, Jakarta, Indonesia

Jesslyn Audrey Virginia, Indonesia International Institute for Life Sciences

Department of Biotechnology, Indonesia International Institute for Life Sciences, Jakarta, Indonesia

Katherine K, PhD, Indonesia International Institute for Life Sciences

Department of Biotechnology, Indonesia International Institute for Life Sciences, Jakarta, Indonesia

References

Aucoin, M. G., Mena, J. A., & Kamen, A. A. (2010). Bioprocessing of Baculovirus Vectors: A Review. Current Gene Therapy, 10(3), 174–186. https://doi.org/10.2174/156652310791321288
Beas-Catena, A., Sánchez-Mirón, A., García-Camacho, F., Contreras-Gómez, A., & Molina-Grima, E. (2013). The effect of spent medium recycle on cell proliferation, metabolism and baculovirus production by the lepidopteran Se301 cell line infected at very low MOI. Journal of Microbiology and Biotechnology, 23(12), 1747–1756. https://doi.org/10.4014/jmb.1305.05067
Besnard, L., Fabre, V., Fettig, M., Gousseinov, E., Kawakami, Y., Laroudie, N., … Pattnaik, P. (2016). Clarification of vaccines: An overview of filter based technology trends and best practices. Biotechnology Advances. Elsevier Inc. https://doi.org/10.1016/j.biotechadv.2015.11.005 -
Carinhas, N., Bernal, V., Monteiro, F., Carrondo, M. J. T., Oliveira, R., & Alves, P. M. (2010). Improving baculovirus production at high cell density through manipulation of energy metabolism. Metabolic Engineering, 12(1), 39–52. https://doi.org/10.1016/j.ymben.2009.08.008
Carvalho, S. B., Fortuna, A. R., Wolff, M. W., Peixoto, C., Alves, P. M., Reichl, U., & Carrondo, M. J. T. (2018). Purification of influenza virus-like particles using sulfated cellulose membrane adsorbers. Journal of Chemical Technology and Biotechnology, 93(7), 1988–1996. https://doi.org/10.1002/jctb.5474
Carvalho, S. B., Silva, R. J. S., Moleirinho, M. G., Cunha, B., Moreira, A. S., Xenopoulos, A., … Peixoto, C. (2019). Membrane-Based Approach for the Downstream Processing of Influenza Virus-Like Particles. Biotechnology Journal, 14(8). https://doi.org/10.1002/biot.201800570
Carvalho, S. B., Silva, R. J. S., Moreira, A. S., Cunha, B., Clemente, J. J., Alves, P. M., … Peixoto, C. (2019). Efficient filtration strategies for the clarification of influenza virus-like particles derived from insect cells. Separation and Purification Technology, 218, 81–88. https://doi.org/10.1016/j.seppur.2019.02.040
CDC. (2019). 1918 Pandemic (H1N1 virus) | Pandemic Influenza (Flu) | CDC. Retrieved 1 November 2020, from https://www.cdc.gov/flu/pandemic-resources/1918-pandemic-h1n1.html
Chen, H. B., Chen, M., Peng, H. H., Xu, Q. F., Li, X. C., & Bai, B. (2019). Relationship between the benefits of paraspinal mapping and diffusion tensor imaging and the increase of decompression levels determined by conventional magnetic resonance imaging in degenerative lumbar spinal stenosis. Journal of Orthopaedic Surgery and Research, 14(1). https://doi.org/10.1186/s13018-019-1065-5
Cherradi, Y., Le Merdy, S., Sim, L. J., Ito, T., Pattnaik, P., & Haas, J. (2018). Filter-based clarification of viral vaccines and vectors. BioProcess Int, 16(4).
Chisti, Y., & Moo-Young, M. (1994). Clean-in-place systems for industrial bioreactors: Design, validation and operation. Journal of Industrial Microbiology. Springer-Verlag. https://doi.org/10.1007/BF01569748 -
Contreras-Gómez, A., Sánchez-Mirón, A., García-Camacho, F., Molina-Grima, E., & Chisti, Y. (2014). Protein production using the baculovirus-insect cell expression system. Biotechnology Progress, 30(1), 1–18. https://doi.org/10.1002/btpr.1842 -
Cox, M. M. J. (2012). Recombinant protein vaccines produced in insect cells. Vaccine. https://doi.org/10.1016/j.vaccine.2012.01.016 -
Drugmand, J. C., Schneider, Y. J., & Agathos, S. N. (2012, September). Insect cells as factories for biomanufacturing. Biotechnology Advances. https://doi.org/10.1016/j.biotechadv.2011.09.014 -
Durous, L., Rosa-Calatrava, M., & Petiot, E. (2019). Advances in influenza virus-like particles bioprocesses. Expert Review of Vaccines. Taylor and Francis Ltd. https://doi.org/10.1080/14760584.2019.1704262 -
Effio, C. L. (2016). Novel development tools for processing of recombinant virus-like particles. [Doctoral dissertation, Karlsruher Institut für Technologie]. https://doi.org/10.5445/ir/1000052361
Effio, C. L., & Hubbuch, J. (2015). Next generation vaccines and vectors: Designing downstream processes for recombinant protein-based virus-like particles. Biotechnology Journal. Wiley-VCH Verlag. https://doi.org/10.1002/biot.201400392
Eibl, R., Steiger, N., Wellnitz, S., Vicente, T., John, C., & Eibl, D. (2014). Fast Single-Use VLP Vaccine Productions Based on Insect Cells and the Baculovirus Expression Vector System: Influenza as Case Study. Advances in Biochemical Engineering/Biotechnology, 138, 99–125. https://doi.org/10.1007/10_2013_186
Flickinger, M. C. (2009). Encyclopedia of Industrial Biotechnology. Encyclopedia of Industrial Biotechnology. John Wiley & Sons, Inc. https://doi.org/10.1002/9780470054581
Fries, L. F., Smith, G. E., & Glenn, G. M. (2013). A recombinant virus-like particle influenza A (H7N9) vaccine. New England Journal of Medicine, 369(26), 2564-2566.
Ge, J., An, Q., Gao, D., Liu, Y., & Ping, W. (2016). Construction of recombinant baculoviruses expressing hemagglutinin of H5N1 avian influenza and research on the immunogenicity. Scientific Reports, 6. https://doi.org/10.1038/srep24290
GE Healthcare. (2011). WAVE Bioreactor™ 2/10 and 20/50 systems. Retrieved 1 November 2020, from https://www.cytivalifesciences.co.jp/catalog/pdf/28952058ab.pdf.
Hahn, T., Courbron, D., Hamer, M., Masoud, M., Wong, J., Taylor, K., … Smith, G. (2013). Rapid Manufacture and Release of a GMP Batch of Avian Influenza A(H7N9) Virus-Like Particle Vaccine Made Using Recombinant Baculovirus-Sf9 Insect Cell Culture Technology. BioProcessing Journal, 12(2), 4–17. https://doi.org/10.12665/j122.hahn
Hattori, T., Nakanishi, K., Mori, T., Tomita, M., & Tsumoto, K. (2016). The method used to culture host cells (Sf9 cells) can affect the qualities of baculovirus budding particles expressing recombinant proteins. Bioscience, Biotechnology and Biochemistry, 80(3), 445–451. https://doi.org/10.1080/09168451.2015.1101331
Hebel, D. (2014). Making glass bioreactors CIP and SIP capable: Infors HT develops an approach designed to increase system throughput. Genetic Engineering and Biotechnology News, 34(16), 34–35. https://doi.org/10.1089/gen.34.16.15
Hillebrandt, N., Vormittag, P., Bluthardt, N., Dietrich, A., & Hubbuch, J. (2020). Integrated Process for Capture and Purification of Virus-Like Particles: Enhancing Process Performance by Cross-Flow Filtration. Frontiers in Bioengineering and Biotechnology, 8. https://doi.org/10.3389/fbioe.2020.00489
Hutchins, B., Sajjadi, N., Seaver, S., Shepherd, A., Bauer, S. R., Simek, S., … Aguilar-Cordova, E. (2000). Working toward an adenoviral vector testing standard. Molecular Therapy. https://doi.org/10.1006/mthe.2000.0217
Kirkland, B. (2015). Cleaning in Place: A Guide to Cleaning Technology in the Food Processing Industry : Handbook. (T. P. P. Systems, Ed.), Chemical Engineer (London) (p. 40).
Kis, Z., Shattock, R., Shah, N., & Kontoravdi, C. (2019). Emerging Technologies for Low-Cost, Rapid Vaccine Manufacture. Biotechnology Journal. Wiley-VCH Verlag. https://doi.org/10.1002/biot.201800376
Koller, K. (2020). CIP Processes. Retrieved 1 November 2020, from https://bioengineering.ch/assets/Dokumente/Products-Services/0731-12-E-PB-CIP-processes.pdf
Koho, T., Koivunen, M. R. L., Oikarinen, S., Kummola, L., Mäkinen, S., Mähönen, A. J., … Laitinen, O. H. (2014). Coxsackievirus B3 VLPs purified by ion exchange chromatography elicit strong immune responses in mice. Antiviral Research, 104(1), 93–101. https://doi.org/10.1016/j.antiviral.2014.01.013
Koho, T., Mäntylä, T., Laurinmäki, P., Huhti, L., Butcher, S. J., Vesikari, T., … Hytönen, V. P. (2012). Purification of norovirus-like particles (VLPs) by ion exchange chromatography. Journal of Virological Methods, 181(1), 6–11. https://doi.org/10.1016/j.jviromet.2012.01.003
Ladd Effio, C., Wenger, L., Ötes, O., Oelmeier, S. A., Kneusel, R., & Hubbuch, J. (2015). Downstream processing of virus-like particles: Single-stage and multi-stage aqueous two-phase extraction. Journal of Chromatography A, 1383, 35–46. https://doi.org/10.1016/j.chroma.2015.01.007
Lai, C. C., Cheng, Y. C., Chen, P. W., Lin, T. H., Tzeng, T. T., Lu, C. C., … Hu, A. Y. C. (2019). Process development for pandemic influenza VLP vaccine production using a baculovirus expression system. Journal of Biological Engineering, 13(1). https://doi.org/10.1186/s13036-019-0206-z
Le Merdy, S. (2015). Selection of Clarification Methods for Improved Downstream Performance and Economics. BioProcessing Journal, 14(3). https://doi.org/10.12665/j143.lemerdy
Li, Z., Wei, J., Yang, Y., Ma, X., Hou, B., An, W., … Su, Z. (2018). Strong hydrophobicity enables efficient purification of HBc VLPs displaying various antigen epitopes through hydrophobic interaction chromatography. Biochemical Engineering Journal, 140, 157–167. https://doi.org/10.1016/j.bej.2018.09.020
López-Vidal, J., Gómez-Sebastián, S., Bárcena, J., Del Carmen Nuñez, M., Martínez-Alonso, D., Dudognon, B., … Escribano, J. M. (2015). Improved production efficiency of virus-like particles by the baculovirus expression vector system. PLoS ONE, 10(10). https://doi.org/10.1371/journal.pone.0140039
Merck Millipore. (2016). Generic Process of Virus-Like Particle (VLP) Based Vaccine Manufacturing (Application Note No. TN1246EN00). Retrieved at https://www.merckmillipore.com/INTERSHOP/web/WFS/Merck-JP-Site/ja_JP/-/JPY/ShowDocument-File?ProductSKU=MM_NF-C613&DocumentId=201701.076.ProNet&DocumentType=TI&Language=EN&Country=NF&Origin=PDP
Meyer, H. P., & Schmidhalter, D. (2014). Industrial scale suspension culture of living cells. John Wiley & Sons.
Michalsky, R., Passarelli, A. L., Pfromm, P. H., & Czermak, P. (2010). Concentration of the baculovirus Autographa californica M nucleopolyhedrovirus (AcMNPV) by ultrafiltration. Desalination, 250(3), 1125-1127. https://doi.org/10.1016/j.desal.2009.09.123
Michl, J., Park, K. C., & Swietach, P. (2019). Evidence-based guidelines for controlling pH in mammalian live-cell culture systems. Communications biology, 2(1), 1-12. https://doi.org/10.1038/s42003-019-0393-7
Moleirinho, M. S. G. (2015). Exploring novel downstream strategies for the purification of enveloped VLPs [Unpublished Bachelor’s Thesis]. Instituto Superior Técnico.
Monteiro, F., Bernal, V., Chaillet, M., Berger, I., & Alves, P. M. (2016). Targeted supplementation design for improved production and quality of enveloped viral particles in insect cell-baculovirus expression system. Journal of Biotechnology, 233, 34-41. https://doi.org/10.1016/j.jbiotec.2016.06.029
Morenweiser, R. (2005). Downstream processing of viral vectors and vaccines. Gene Therapy, 12(1), S103-S110. https://doi.org/10.1038/sj.gt.3302624
Negrete, A., Pai, A., & Shiloach, J. (2014). Use of hollow fiber tangential flow filtration for the recovery and concentration of HIV virus-like particles produced in insect cells. Journal of virological methods, 195, 240-246. https://doi.org/10.1016/j.jviromet.2013.10.017
Palomares, L. A., Realpe, M., & Ramírez, O. T. (2015). An overview of cell culture engineering for the insect cell-baculovirus expression vector system (BEVS). In Animal Cell Culture (pp. 501-519). Springer, Cham. https://doi.org/10.1007/978-3-319-10320-4_15
Pidre, M. L., Ferrelli, M. L., Haase, S., & Romanowski, V. (2013). Baculovirus display: a novel tool for vaccination. Current Issues in Molecular Virology-Viral Genetics and Biotechnological Applications, 137-164. InTech. https://doi.org/10.5772/55572
Pushko, P., Tretyakova, I., Hidajat, R., Sun, X., Belser, J. A., & Tumpey, T. M. (2018). Multi-clade H5N1 virus-like particles: Immunogenicity and protection against H5N1 virus and effects of beta-propiolactone. Vaccine, 36(29), 4346-4353. https://doi.org/10.1016/j.vaccine.2018.05.092
Saxena, A., Byram, P. K., Singh, S. K., Chakraborty, J., Murhammer, D., & Giri, L. (2018). A structured review of baculovirus infection process: integration of mathematical models and biomolecular information on cell–virus interaction. Journal of General Virology, 99(9), 1151-1171. Microbiology Society. https://doi.org/10.1099/jgv.0.001108
Schmidt, S. R., & Wieschalka, S. (2017). Single-Use Depth Filters: Application in Clarifying Industrial Cell Cultures. BioProcess International.
Sequeira, D. P., Correia, R., Carrondo, M. J. T., Roldão, A., Teixeira, A. P., & Alves, P. M. (2018). Combining stable insect cell lines with baculovirus-mediated expression for multi-HA influenza VLP production. Vaccine, 36(22), 3112–3123. https://doi.org/10.1016/j.vaccine.2017.02.043
Shuler, M., Kargi, F., & DeLisa, M. (2017). Bioprocess Engineering: Basic Concepts (3rd ed.). Prentice Hall.
Smith, G. E., Flyer, D. C., Raghunandan, R., Liu, Y., Wei, Z., Wu, Y., … Glenn, G. M. (2013). Development of influenza H7N9 virus like particle (VLP) vaccine: Homologous A/Anhui/1/2013 (H7N9) protection and heterologous A/chicken/Jalisco/CPA1/2012 (H7N3) cross-protection in vaccinated mice challenged with H7N9 virus. Vaccine, 31(40), 4305–4313. https://doi.org/10.1016/j.vaccine.2013.07.043Strobl, F., Ghorbanpour, S. M., Palmberger, D., & Striedner, G. (2020). Evaluation of screening platforms for virus-like particle production with the baculovirus expression vector system in insect cells. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-57761-w
Thompson, C. M., Petiot, E., Mullick, A., Aucoin, M. G., Henry, O., & Kamen, A. A. (2015). Critical assessment of influenza VLP production in Sf9 and HEK293 expression systems. BMC Biotechnology, 15(1). https://doi.org/10.1186/s12896-015-0152-x
Unger, T., & Peleg, Y. (2012). Recombinant protein expression in the baculovirus-infected insect cell system. Methods in Molecular Biology, 800, 187–199. https://doi.org/10.1007/978-1-61779-349-3_13
Vedvick, T. S., Steadman, B., Richardson, C., Foubert, T. R., & Petrie, C. R. (2013). U.S. Patent No. 8,481,693. Washington, DC: U.S. Patent and Trademark Office.
Vicente, T., Roldão, A., Peixoto, C., Carrondo, M. J. T., & Alves, P. M. (2011). Large-scale production and purification of VLP-based vaccines. Journal of Invertebrate Pathology. https://doi.org/10.1016/j.jip.2011.05.004
Whitford, W. (2015). Single-use perfusion bioreactors support continuous biomanufacturing. Pharmaceutical Bioprocessing, 3(1), 75-93.
Wickramasinghe, S. R., Stump, E. D., Grzenia, D. L., Husson, S. M., & Pellegrino, J. (2010). Understanding virus filtration membrane performance. Journal of Membrane Science, 365(1–2), 160–169. https://doi.org/10.1016/j.memsci.2010.09.002
World Health Organization. Module 2: Types of vaccine and adverse reactions. Available online: https://www.who.int/vaccine_safety/initiative/tech_support/Part-2.pdf
Zepeda-Cervantes, J., Ramírez-Jarquín, J. O., & Vaca, L. (2020). Interaction Between Virus-Like Particles (VLPs) and Pattern Recognition Receptors (PRRs) From Dendritic Cells (DCs): Toward Better Engineering of VLPs. Frontiers in Immunology. Frontiers Media S.A. https://doi.org/10.3389/fimmu.2020.01100
Zhou, Y., McNamara, R. P., & Dittmer, D. P. (2020). Purification methods and the presence of RNA in virus particles and extracellular vesicles. Viruses, 12(9), 917. MDPI AG. https://doi.org/10.3390/v12090917
Published
2022-03-31
How to Cite
Chrisdianto, M., Damai, F., Mulyono, R., Virginia, J., & K, K. (2022). Bioprocessing of Avian Influenza VLP Vaccine using Baculovirus-Insect Cell Expression System. Indonesian Journal of Life Sciences, 4(1), 26-47. https://doi.org/https://doi.org/10.54250/ijls.v4i1.69
Section
Indonesian Journal of Life Sciences