Processing Condition and Properties of Protein Isolates from Mung Bean (Vigna radiata) and Quinoa (Chenopodium quinoa Willd)

  • Desak Putu Ariska Pradnya Dewi Indonesia International Institute for Life Sciences
Keywords: Protein isolates; Quinoa; Mung bean; Wet fractionation; Dry fractionation

Abstract

Mung bean and quinoa are good sources of protein from legumes and pseudo cereals respectively. Both sources have relatively high protein content and acceptable amino acids composition. The potential and application of mung bean and quinoa as protein isolates have been discovered in some studies. Several isolation techniques such as wet fractionation (acid-base extraction), micellization, dry fractionation, aqueous separation or combination of some techniques can be used to isolate protein. This review summarized different methods and processing conditions applied during production of mung bean and quinoa protein isolates. Extracting protein from different sources may require different conditions, which results in different compositions and functional properties. Acid-base extraction is the most common method applied in mung bean and quinoa and results in high protein purity and yields. Micellization is an alternative method used in mung bean to produce higher protein content. Dry fractionation is a sustainable option used in quinoa to concentrate protein fractions. Purification methods such as ultrafiltration and aqueous phase separation can be used. Different methods and processing conditions affect functional properties, including solubility, water and oil absorption, emulsification, foaming, thermal properties of isolates, which also affect the suitable application for isolates.

Keywords: Protein isolates; Quinoa; Mung bean; Wet fractionation; Dry fractionation

Downloads

Download data is not yet available.

Author Biography

Desak Putu Ariska Pradnya Dewi, Indonesia International Institute for Life Sciences

Department of Food Technology, Indonesia International Institute for Life-Sciences (i3L), Jakarta, Indonesia.

References

Abugoch, J.L.E., 2009. Quinoa (Chenopodium quinoa Willd.): composition, chemistry, nutritional, and functional properties. Adv. Food Nutr. Res. 58, 1–31. https://doi.org/10.1016/S1043-4526(09)58001-1
Abugoch, L. E., Romero, N., Tapia, C. A., Silva, J., & Rivera, M. (2008). Study of some physicochemical and functional properties of quinoa (Chenopodium quinoa Willd) protein isolates. Journal of Agricultural and Food chemistry, 56(12), 4745-4750. https://doi.org/10.1021/jf703689u
Anwar, F., Latif, S., Przybylski, R., Sultana, B., & Ashraf, M. (2007). Chemical composition and antioxidant activity of seeds of different cultivars of mungbean. Journal of food science, 72(7), S503-S510. https://doi.org/10.1111/j.1750-3841.2007.00462.x
Bansal-Mutalik, R., Bhide S., Gibson, B., Hall, C., Jakubasch, M., Kleiner J., Lanquar, V., Mahadevan, S., Niekowal, T., Proulx, J., Roche, B., Xu, M., Flatt, J., Park, N., 2017. Mung bean protein isolates. WO 2017/143298. WIPO: PCT
Branch, S., & Maria, S. (2017). Evaluation of the functional properties of mung bean protein isolate for development of textured vegetable protein. International Food Research Journal, 24(4), 1595-1605.
Brishti, F. H., Chay, S. Y., Muhammad, K., Ismail-Fitry, M. R., Zarei, M., Karthikeyan, S., & Saari, N. (2020). Effects of drying techniques on the physicochemical, functional, thermal, structural and rheological properties of mung bean (Vigna radiata) protein isolate powder. Food Research International, 138, 109783. https://doi.org/10.1016/j.foodres.2020.109783
Budseekoad, S., Yupanqui, C. T., Sirinupong, N., Alashi, A. M., Aluko, R. E., & Youravong, W. (2018). Structural and functional characterization of calcium and iron-binding peptides from mung bean protein hydrolysate. Journal of Functional Foods, 49, 333-341. https://doi.org/10.1016/j.jff.2018.07.041
Butt, M. S., & Rizwana, B. (2010). Nutritional and functional properties of some promising legumes protein isolates. Pakistan Journal of Nutrition, 9(4), 373-379.
Collar, C. (2016). Quinoa. Encyclopedia of Food and Health, 573-579.
Dahiya, P.K.; Linnemann, A.R.; Van Boekel, M.A.J.S.; Khetarpaul, N.; Grewal, R.B.; Nout, M.J.R. Mung bean: Technological and nutritional potential. Crit. Rev. Food Sci. Nutr. 2015, 55, 670–688. [CrossRef] [PubMed]. https://doi.org/10.1080/10408398.2012.671202
Elsohaimy, S. A., Refaay, T. M., & Zaytoun, M. A. M. (2015). Physicochemical and functional properties of quinoa protein isolate. Annals of Agricultural Sciences, 60(2), 297-305. https://doi.org/10.1016/j.aoas.2015.10.007
Escuredo, O., Martín, M. I. G., Moncada, G. W., Fischer, S., & Hierro, J. M. H. (2014). Amino acid profile of the quinoa (Chenopodium quinoa Willd.) using near infrared spectroscopy and chemometric techniques. Journal of Cereal Science, 60(1), 67-74. https://doi.org/10.1016/j.jcs.2014.01.016
Fernández-Quintela, A., Macarulla, M. T., Del Barrio, A. S., & Martínez, J. A. (1997). Composition and functional properties of protein isolates obtained from commercial legumes grown in northern Spain. Plant Foods for Human Nutrition, 51(4), 331-341. https://doi.org/10.1023/A:1007936930354
Föste, M., Elgeti, D., Brunner, A. K., Jekle, M., & Becker, T. (2015). Isolation of quinoa protein by milling fractionation and solvent extraction. Food and Bioproducts Processing, 96, 20-26. https://doi.org/10.1016/j.fbp.2015.06.003
Garba, U., & Kaur, S. (2014). Protein isolates: Production, functional properties and application. International journal of current research and review, 6(3), 35.
Hadnađev, M. S., Hadnađev-Dapčević, T., Pojić, M. M., Šarić, B. M., Mišan, A. Č., Jovanov, P. T., & Sakač, M. B. (2017). Progress in vegetable proteins isolation techniques: A review. Food and Feed research, 44(1), 11-21.
Hoffman, J. R., & Falvo, M. J. (2004). Protein–which is best?. Journal of sports science & medicine, 3(3), 118.
Klomklao, S., Benjakul, S., Kishimura, H., & Chaijan, M. (2011). Extraction, purification and properties of trypsin inhibitor from Thai mung bean (Vigna radiata (L.) R. Wilczek). Food chemistry, 129(4), 1348-1354. https://doi.org/10.1016/j.foodchem.2011.05.029
Kudre, T. G., Benjakul, S., & Kishimura, H. (2013). Comparative study on chemical compositions and properties of protein isolates from mung bean, black bean and bambara groundnut. Journal of the Science of Food and Agriculture, 93(10), 2429-2436. https://doi.org/10.1002/jsfa.6052
Kusumah, S. H., Andoyo, R., & Rialita, T. (2020, February). Protein isolation techniques of beans using different methods: A review. In IOP Conference Series: Earth and Environmental Science (Vol. 443, No. 1, p. 012053). IOP Publishing.
Opazo-Navarrete, M., Freire, D. T., Boom, R. M., Janssen, A. E., & Schutyser, M. A. (2018). Dry fractionation of quinoa sweet varieties Atlas and Riobamba for sustainable production of protein and starch fractions. Journal of Food Composition and Analysis, 74, 95-101. https://doi.org/10.1016/j.jfca.2018.09.009
Rahma, E. H., Dudek, S., Mothes, R., Görnitz, E., & Schwenke, K. D. (2000). Physicochemical characterisation of mung bean (Phaseolus aureus) protein isolates. Journal of the Science of Food and Agriculture, 80(4), 477-483. https://doi.org/10.1002/(SICI)1097-0010(200003)80:4%3C477::AID-JSFA553%3E3.0.CO;2-0
Rana, G. K., Singh, N. K., Deshmukh, K. K., & Mishra, S. P. (2019). Quinoa: New Light on An Old Superfood: A Review. Agricultural Reviews, 40(4), 319-323. http://dx.doi.org/10.18805/ag.R-1927
Ruiz, G. A. (2016). Exploring novel food proteins and processing technologies: a case study on quinoa protein and high pressure–high temperature processing.
Ruiz, G. A., Arts, A., Minor, M., & Schutyser, M. (2016). A hybrid dry and aqueous fractionation method to obtain protein-rich fractions from quinoa (Chenopodium quinoa Willd). Food and Bioprocess Technology, 9(9), 1502-1510. https://doi.org/10.1007/s11947-016-1731-0
Schutyser, M. A. I., & van der Goot, A. J. (2011). The potential of dry fractionation processes for sustainable plant protein production. Trends in Food Science & Technologies, 22, 154–164. https://doi.org/10.1016/j.tifs.2010.11.006
Shen, Y., Tang, X., & Li, Y. (2021). Drying methods affect physicochemical and functional properties of quinoa protein isolate. Food Chemistry, 339, 127823. https://doi.org/10.1016/j.foodchem.2020.127823
Toapanta, A., Carpio, C., Vilcacundo, R., & Carrillo, W. (2016). Analysis of protein isolate from quinoa (Chenopodium quinoa Willd). Asian J. Pharm. Clin. Res, 9, 332-334.
Torio, M. A. O., Adachi, M., Garcia, R. N., Prak, K., Maruyama, N., Utsumi, S., & Tecson-Mendoza, E. M. (2011). Effects of engineered methionine in the 8Sα globulin of mungbean on its physicochemical and functional properties and potential nutritional quality. Food research international, 44(9), 2984-2990. https://doi.org/10.1016/j.foodres.2011.07.010
USDA. Quinoa, uncooked. (2019). Retrieved from USDA.
Valencia-Chamorro, S. A. (2015). Quinoa: Overview. Encyclopedia of Food Grains: Second Edition, 1–4, 341–348.
Verma, A. K., Kumar, S., Das, M., & Dwivedi, P. D. (2013). A comprehensive review of legume allergy. Clinical reviews in allergy & immunology, 45(1), 30-46. https://doi.org/10.1007/s12016-012-8310-6
Westfall, P.H., Nardelli, C. A., Schimpf, K. J., 1992. Isolation of proteins by ultrafiltration. US5658714A. United State. https://patents.google.com/patent/US5658714A/en
Wu, G. (2016). Dietary protein intake and human health. Food & function, 7(3), 1251-1265. https://doi.org/10.1039/C5FO01530H
Yi-Shen, Z., Shuai, S., & FitzGerald, R. (2018). Mung bean proteins and peptides: Nutritional, functional and bioactive properties. Food & nutrition research, 62. https://dx.doi.org/10.29219%2Ffnr.v62.1290
Published
2022-03-31
How to Cite
Dewi, D. (2022). Processing Condition and Properties of Protein Isolates from Mung Bean (Vigna radiata) and Quinoa (Chenopodium quinoa Willd). Indonesian Journal of Life Sciences, 4(1), 89-99. https://doi.org/https://doi.org/10.54250/ijls.v4i1.98
Section
Indonesian Journal of Life Sciences