A Review on the Antimicrobial Properties of Giant Barrel Sponge- Xestospongia sp.
Abstract
Indonesia sits in the heart of the largest biodiversity hotspot -Indo-Pacific region. Indonesia has access to endless resources of bioactive compounds from marine animals and plants. Marine sponges have been extensively studied over the years due to their nature of being exposed to various microorganisms. Xestospongia sp. establishes a symbiotic relationship with diverse microorganisms, leading to the synthesis of abundant bioactive resources which capable of inhibiting the growth of pathogenic bacteria. Publications from the last ten years were retrieved from PubMed and included in this review article. Bioactive compounds produced by Xestospongia sp. were effective in inhibiting gram-negative bacteria- P. aeruginosa, A. baumanii, E. coli, K. pneumoniae, P. aeruginosa, S. epidermis, S. typhi- and gram-positive bacteria -M. Intracellulare, S. aureus, S. pneumoniae, B. subtilis, V. anguaillarum. In addition, extracts were able to inhibit the growth of multidrug-resistance P. aeruginosa and methicillin-resistant S. aureus (MRSA). C. albicans, C. tropicalis, C. neofarmans, A. niger, Epidermophyton sp., M. gypseum, T. rubrum, T. mentagrophytes were susceptible to Xestospongia sp. extracts. The growth of chloroquine-resistant and susceptible strains of P. falciparum were inhibited by Xestospongia sp. with similar zones of inhibitions. The antimicrobial properties were contributed by the composition of chemically complex compounds such as phenolics, steroids and alkaloids; each of which exhibits a unique mechanism of action. The vast range of antimicrobial activity exhibited by Xestospongia sp. extracts implies their promising role in clinical settings for the treatment of infectious diseases including tuberculosis and malaria.
Downloads
References
Ayyad, S.-E. N., Katoua, D. F., Alarif, W. M., Sobahi, T. R., Aly, M. M., Shaala, L. A., & Ghandourah, M. A. (2015). Two new polyacetylene derivatives from the Red Sea sponge Xestospongia sp. Zeitschrift Für Naturforschung C, 70(11–12), 297–303. https://doi.org/10.1515/znc-2015-5015
Bin Dajem, S. M., & Al-Qahtani, A. (2010). Analysis of gene mutations involved in chloroquine resistance in Plasmodium falciparum parasites isolated from patients in the southwest of Saudi Arabia. Annals of Saudi Medicine, 30(3), 187–192. https://doi.org/10.4103/0256-4947.62826
Buffet, P. A., Safeukui, I., Deplaine, G., Brousse, V., Prendki, V., Thellier, M., … Mercereau-Puijalon, O. (2011). The pathogenesis of Plasmodium falciparum malaria in humans: insights from splenic physiology. Blood, 117(2), 381–392. https://doi.org/10.1182/blood-2010-04-202911
Caspers, H. (1979). Felix Wiedenmayer: Shallow-Water Sponges of the Western Bahamas (Experientia Supplementum 28). – With 180 figs., 43 plates, 52 tables, 287 pp. – Basel – Stuttgart: Birkhäuser Verlag 1977. ISBN 3-7643-0906-7 Sfr. 120.–. Internationale Revue Der Gesamten Hydrobiologie Und Hydrographie, 64(4), 500–500. https://doi.org/10.1002/iroh.19790640411
Cimino, G., & De Stefano, S. (1977). New acetylenic compounds from the sponge reniera fulva. Tetrahedron Letters, 18(15), 1325–1328. https://doi.org/10.1016/s0040-4039(01)93008-4
Cita, Y. P., Suhermanto, A., Radjasa, O. K., & Sudharmono, P. (2017). Antibacterial activity of marine bacteria isolated from sponge Xestospongia testudinaria from Sorong, Papua. Asian Pacific Journal of Tropical Biomedicine, 7(5), 450–454. https://doi.org/10.1016/j.apjtb.2017.01.024
de Bentzmann, S., & Plésiat, P. (2011). The Pseudomonas aeruginosa opportunistic pathogen and human infections. Environmental Microbiology, 13(7), 1655–1665. https://doi.org/10.1111/j.1462-2920.2011.02469.x
Deshmukh, S. K., Prakash, V., & Ranjan, N. (2018). Marine Fungi: A Source of Potential Anticancer Compounds. Frontiers in Microbiology, 8. https://doi.org/10.3389/fmicb.2017.02536
Diakité S.A.S, Traoré K., Sanogo I., Clark T.G., Campino S., Sangaré M., et al. (2019). A Comprehensive Analysis of Drug Resistance Molecular Markers and Plasmodium falciparum Genetic Diversity in Two Malaria Endemic Sites in Mali. Malaria journal, 18(1), 1-9. https://doi.org/10.1186/s12936-019-2986-5 Elyazar, I. R. F., Hay, S. I., & Baird, J. K. (2011). Malaria Distribution, Prevalence, Drug Resistance and Control in Indonesia. Advances in Parasitology Volume 74, (74), 41–175. https://doi.org/10.1016/b978-0-12-385897-9.00002-1
Goulletquer, P., Gros, P., Boeuf, G., & Weber, J. (2014). The Importance of Marine Biodiversity. Biodiversity in the Marine Environment, 1–13. https://doi.org/10.1007/978-94-017-8566-2_1
Griffin, C. E., Hoke, J. M., Samarakoon, U., Duan, J., Mu, J., Ferdig, M. T., … Cooper, R. A. (2012). Mutation in the Plasmodium falciparum CRT Protein Determines the Stereospecific Activity of Antimalarial Cinchona Alkaloids. Antimicrobial Agents and Chemotherapy, 56(10), 5356–5364. https://doi.org/10.1128/aac.05667-11
Guignard, B., Entenza, J., & Moreillon, P. (2005). β-lactams against methicillin-resistant. Current Opinion in Pharmacology, 5(5), 479–489. https://doi.org/10.1016/j.coph.2005.06.002
Hanif, N., Murni, A., Tanaka, C., & Tanaka, J. (2019). Marine Natural Products from Indonesian Waters. Marine Drugs, 17(6), 364. https://doi.org/10.3390/md17060364
Helber, S. B., Hoeijmakers, D. J. J., Muhando, C. A., Rohde, S., & Schupp, P. J. (2018). Sponge chemical defenses are a possible mechanism for increasing sponge abundance on reefs in Zanzibar. PLOS ONE, 13(6), e0197617. https://doi.org/10.1371/journal.pone.0197617
Hoffmann, F., Larsen, O., Thiel, V., Rapp, H. T., Pape, T., Michaelis, W., & Reitner, J. (2005). An Anaerobic World in Sponges. Geomicrobiology Journal, 22(1–2), 1–10. https://doi.org/10.1080/01490450590922505
Kim, S., & Dewapriya, P. (2012). Bioactive Compounds from Marine Sponges and Their Symbiotic Microbes. Marine Medicinal Foods - Implications and Applications - Animals and Microbes, 137–151. https://doi.org/10.1016/b978-0-12-416003-3.00008-1
Laport, M. S., Santos, O. C. S., & Muricy, G. (2009). Marine sponges: potential sources of new antimicrobial drugs. Current Pharmaceutical Biotechnology, 10(1), 86–105. https://doi.org/10.2174/138920109787048625
Lawhon, S. D. (2016). 116 Methicillin-resistant Staphylococcus aureus (MRSA) in livestock production: An overview. Journal of Animal Science, 94(suppl_1), 56–57. https://doi.org/10.2527/ssasas2015-116
Lopes J.P., Stylianou M., Nilsson G., Urban C.F. (2015). Opportunistic Pathogen Candida albicans Elicits a Temporal Response in Primary Human Mast Cells. Scientific Reports, 5:12287. https://doi: 10.1038/srep12287
Longeon, A., Copp, B. R., Quévrain, E., Roué, M., Kientz, B., Cresteil, T., … Bourguet-Kondracki, M.-L. (2011). Bioactive Indole Derivatives from the South Pacific Marine Sponges Rhopaloeides odorabile and Hyrtios sp. Marine Drugs, 9(5), 879–888. https://doi.org/10.3390/md9050879
Longeon, A., Copp, B. R., Roué, M., Dubois, J., Valentin, A., Petek, S., … Bourguet-Kondracki, M.-L. (2010). New bioactive halenaquinone derivatives from South Pacific marine sponges of the genus Xestospongia. Bioorganic & Medicinal Chemistry, 18(16), 6006–6011. https://doi.org/10.1016/j.bmc.2010.06.066
Maier, A. G., Matuschewski, K., Zhang, M., & Rug, M. (2019). Plasmodium falciparum. Trends in Parasitology, 35(6), 481–482. https://doi.org/10.1016/j.pt.2018.11.010
Maurice, N. M., Bedi, B., & Sadikot, R. T. (2018). Pseudomonas aeruginosa Biofilms: Host Response and Clinical Implications in Lung Infections. American Journal of Respiratory Cell and Molecular Biology, 58(4), 428–439. https://doi.org/10.1165/rcmb.2017-0321tr
Mayer, A. M. S., Guerrero, A. J., Rodríguez, A. D., Taglialatela-Scafati, O., Nakamura, F., & Fusetani, N. (2019). Marine Pharmacology in 2014–2015: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis, Antiviral, and Anthelmintic Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action. Marine Drugs, 18(1), 5. https://doi.org/10.3390/md18010005
McGrath, E. C., Woods, L., Jompa, J., Haris, A., & Bell, J. J. (2018). Growth and longevity in giant barrel sponges: Redwoods of the reef or Pines in the Indo-Pacific? Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-33294-1
Mohanty, S., Baliyarsingh, B., & Nayak, S. K. (2020). Antimicrobial Resistance in Pseudomonas aeruginosa: A Concise Review. Antimicrobial Resistance. https://doi.org/10.5772/intechopen.88706
Nguyen, T. K. C., Tran, T. H., Tran, T. K. D., Nguyen, P. H., & Pham, V. C. (2019). Antimicrobial Activity of Bacteria Associated with Sponge Xestospongia testudinaria in Vietnam. Internation Journal of Development Research, 09(03), 26384–26388.
Nobile, C. J., & Johnson, A. D. (2015). Candida albicansBiofilms and Human Disease. Annual Review of Microbiology, 69(1), 71–92. https://doi.org/10.1146/annurev-micro-091014-104330
Ocan, M., Akena, D., Nsobya, S., Kamya, M. R., Senono, R., Kinengyere, A. A., & Obuku, E. A. (2018). Prevalence of chloroquine resistance alleles among Plasmodium falciparum parasites in countries affected by malaria disease since change of treatment policy: a systematic review protocol. Systematic Reviews, 7(1). https://doi.org/10.1186/s13643-018-0780-z
Parama Cita, Y., Kamal Muzaki, F., Radjasa, O. K., & Sudarmono, P. (2017). Screening of Antimicrobial Activity of Sponges Extract from Pasir Putih, East Java (Indonesia). Journal of Marine Science: Research & Development, 07(05). https://doi.org/10.4172/2155-9910.1000237
Paul, V. J., Arthur, K. E., Ritson-Williams, R., Ross, C., & Sharp, K. (2007). Chemical Defenses: From Compounds to Communities. The Biological Bulletin, 213(3), 226–251. https://doi.org/10.2307/25066642
Putra, M. Y., Hadi, T. A., & Murniasih, T. (2016). In vitro antibacterial and antifungal activities of twelve sponges collected from the Anambas Islands, Indonesia. Asian Pacific Journal of Tropical Disease, 6(9), 732–735. https://doi.org/10.1016/s2222-1808(16)61119-2
Rodriguez, J., Garcia-Pachon, E., Ruiz, M., & Royo, G. (2006). Drug Susceptibility of the Mycobacterium Genus: In Vitro Tests and Clinical Implications. Current Clinical Pharmacology, 1(3), 277–289. https://doi.org/10.2174/157488406778249361
Sadikot, R. T., Blackwell, T. S., Christman, J. W., & Prince, A. S. (2005). Pathogen–Host Interactions inPseudomonas aeruginosaPneumonia. American Journal of Respiratory and Critical Care Medicine, 171(11), 1209–1223. https://doi.org/10.1164/rccm.200408-1044so
Smith, I. (2003). Mycobacterium tuberculosis Pathogenesis and Molecular Determinants of Virulence. Clinical Microbiology Reviews, 16(3), 463–496. https://doi.org/10.1128/cmr.16.3.463-496.2003
Sutanto, I., Endawati, D., Ling, L. H., Laihad, F., Setiabudy, R., & Baird, J. K. (2010). Evaluation of chloroquine therapy for vivax and falciparum malaria in southern Sumatra, western Indonesia. Malaria Journal, 9(1). https://doi.org/10.1186/1475-2875-9-52
Taylor, M. W., Radax, R., Steger, D., & Wagner, M. (2007). Sponge-Associated Microorganisms: Evolution, Ecology, and Biotechnological Potential. Microbiology and Molecular Biology Reviews, 71(2), 295–347. https://doi.org/10.1128/mmbr.00040-06
Watanabe, K., Tsuda, Y., Yamane, Y., Takahashi, H., Iguchi, K., Naoki, H., … Van Soest, R. W. . (2000). Strongylodiols A, B and C, new cytotoxic acetylenic alcohols isolated from the Okinawan marine sponge of the genus Strongylophora as each enantiomeric mixture with a different ratio. Tetrahedron Letters, 41(48), 9271–9276. https://doi.org/10.1016/s0040-4039(00)01692-0
Weis, V., Reynolds, W., deBoer, M., & Krupp, D. (2001). Host-symbiont specificity during onset of symbiosis between the dinoflagellates Symbiodinium spp. and planula larvae of the scleractinian coral Fungia scutaria. Coral Reefs, 20(3), 301–308. https://doi.org/10.1007/s003380100179
Yesudhason, B. L. (2015). Candida tropicalis as a Predominant Isolate from Clinical Specimens and its Antifungal Susceptibility Pattern in a Tertiary Care Hospital in Southern India. JOURNAL OF CLINICAL AND DIAGNOSTIC RESEARCH. https://doi.org/10.7860/jcdr/2015/13460.6208
Zuza-Alves, D. L., Silva-Rocha, W. P., & Chaves, G. M. (2017). An Update on Candida tropicalis Based on Basic and Clinical Approaches. Frontiers in Microbiology, 8. https://doi.org/10.3389/fmicb.2017.01927
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Articles published in Indonesian Journal Life of Sciences are licensed under a Creative Commons Attribution-ShareAlike 4.0 International license. You are free to copy, transform, or redistribute articles for any lawful purpose in any medium, provided you give appropriate credit to the original author(s) and Indonesian Journal Life of Sciences, link to the license, indicate if changes were made, and redistribute any derivative work under the same license. Copyright on articles is retained by the respective author(s), without restrictions. A non-exclusive license is granted to Indonesian Journal Life of Sciences to publish the article and identify itself as its original publisher, along with the commercial right to include the article in a hardcopy issue for sale to libraries and individuals. By publishing in Indonesian Journal Life of Sciences, authors grant any third party the right to use their article to the extent provided by the Creative Commons Attribution-ShareAlike 4.0 International license.