The Ability of Aquatic Carnivorous Plants Utricularia vulgaris L. as Heavy Metal Bioremediators

  • Mukhamad Su'udi Jember University, Indonesia
  • Fahma Wardah Sururin Jember University, Indonesia
  • Kurnia Dwi Ardiyanti Jember University, Indonesia
Keywords: Common bladderwort, Water contaminants, Phytoremediation

Abstract

Utricularia vulgaris is one of the aquatic carnivorous plants that is able to grow in low-nutrient environmental conditions. This unique plant is also a macrophytic plant whose entire body except for the flowers is submerged in water. Utricularia vulgaris also has no roots so it grows to float in water. The plant was found growing in an environment polluted by heavy metals. Several studies have shown that U. vulgaris is able to absorb several types of heavy metals effectively, such as Cu, Mn, Zn, and Fe. These heavy metals are needed in small amounts by organisms, but in high amounts they can inhibit the growth of aquatic organisms. Utricularia vulgaris, a carnivorous plant, has shown the potential to absorb heavy metals, making it a subject of interest for phytoremediation.

Downloads

Download data is not yet available.

Author Biographies

Mukhamad Su'udi, Jember University, Indonesia

Department of Biology, Mathematics and Natural Sciences Faculty, Jember University

Fahma Wardah Sururin, Jember University, Indonesia

Department of Biology, Mathematics and Natural Sciences Faculty, Jember University

Kurnia Dwi Ardiyanti, Jember University, Indonesia

Department of Biology, Mathematics and Natural Sciences Faculty, Jember University

References

Adamec, L. (2013). A comparison of photosynthetic and respiration rates in six aquatic carnivorousUtricularia species differing in morphology. Aquatic botany, 111, 89-94. https://doi.org/10.1016/j.aquabot.2013.06.004
Akbar, N. A., A. A. Abu Bakar, N. Mat Daud, S. Badrealam, & N. A. A. Tarmizi. (2017). Removal of cu2+usingUtricularia aurea as a biosorbent in synthetic industrial wastewater. ESTEEMAcademic Journal, 13, 146-153. https://ir.uitm.edu.my/id/eprint/28754
Alias, S., C. Marajan, & M. A. Jemain. (2009). Adsorption of zinc from wastewater using Bladderwort (Utricularia vulgaris). Esteem Academic Journal, 5(1), 25-36. https://ir.uitm.edu.my/id/eprint/16298
Amoatey, P., & M. S. Baawain. (2019). Effects of pollution on freshwater aquatic organisms. WaterEnvironment Research, 91(10), 1272-1287. https://doi.org/10.1002/wer.1221
Astuti, G., & L. Peruzzi. (2018). Are shoots of diagnostic value in Central European bladderworts (UtriculariaL., Lentibulariaceae)?. Plant Biosystems-An International Journal Dealing with all Aspects of PlantBiology, 152(6), 1214-1226. https://doi.org/10.1080/11263504.2018.1435573
Audry, S., J. Schäfer, G. Blanc, & J. M. Jouanneau. (2004). Fifty-year sedimentary record of heavy metal pollution (Cd, Zn, Cu, Pb) in the Lot River reservoirs (France). Environmental Pollution, 132(3), 413-426. https://doi.org/10.1016/j.envpol.2004.05.025
Azeez, N. M. (2021). Bioaccumulation and phytoremediation of some heavy metals (Mn, Cu, ZnandPb) by bladderwort and duckweed. Biodiversitas Journal of Biological Diversity, 22(5), 2993-2998. https://doi.org/10.13057/biodiv/d220564
Azizah, R., Malau, R., Susanto, A. B., Santosa, G. W., Hartati, R., Irwani, I., & Suryono, S. (2018). Kandungan timbal pada air, sedimen, dan rumput laut Sargassum sp. di perairan Jepara, Indonesia. Jurnal Kelautan Tropis, 21(2), 155-156. https://doi.org/10.14710/jkt.v21i2.3010
Bakar, A. A. B. A., Ali, K. A. B. M., Tarmizi, N. A. B. A., Japeri, A. Z. U. S. B. M., & Tammy, N. J. B. (2016). Potential of using bladderwort as a biosorbent to remove zinc in wastewater. AIP conference proceedings. 1774(1): 030023. https://doi.org/10.1063/1.4965079
Blair, R. M., Waldron, S., Phoenix, V., & Gauchotte-Lindsay, C. (2017). Micro-and nanoplastic pollution of freshwater and wastewater treatment systems. Springer Science Reviews, 5, 19-30. https://doi.org/10.1007/s40362-017-0044-7
Freund, M., Graus, D., Fleischmann, A., Gilbert, K. J., Lin, Q., Renner, T., Stigloher, C., Albert, V. A., Hedrich, R., & Fukushima, K. (2022). The digestive systems of carnivorous plants. Plant Physiology, 190(1), 44-59. https://doi.org/10.1093/plphys/kiac232
Gawad, S. S. A. (2018). Acute toxicity of some heavy metals to the freshwater snail, Theodoxus niloticus(Reeve, 1856). The Egyptian Journal of Aquatic Research, 44(2), 83-87. https://doi.org/10.1016/j.ejar.2018.06.004
Gemaque, T. C., da-Costa, D. P., Pereira, L. V., & Filho, K. C. M. (2019). Evaluation of iron toxicity in tropical fish Leporinus Frideric. Biomedical Journal of Scientific & Technical Research, 18(2), 13436-13441. doi: 10.26717/BJSTR.2019.18.003127
Gontijo, E. S., Watanabe, C. H., Monteiro, A. S., da Silva, G. A., Roeser, H. M., Rosa, A. H., &Friese, K. (2017). Effects of Fe (III) and quality of humic substances on As (V) distribution in freshwater: Useofultrafiltration and Kohonen neural network. Chemosphere, 188, 208-217. https://doi.org/10.1016/j.chemosphere.2017.08.143
Harford, A. J., Mooney, T. J., Trenfield, M. A., & van Dam, R. A. (2015). Manganese toxicity to tropical freshwater species in low hardness water. Environmental Toxicology and Chemistry. 34(12): 2856-2863. https://doi.org/10.1002/etc.3135
Irina, S. & Constantin, T. (2007). Morpho-structural adaptations of some aquatic carnivorous plant species(Aldrovanda vesiculosa L. and Utricularia vulgaris L.). Journal of Plant Development, 14. http://www.plant-journal.uaic.ro/docs/2007/2.pdf
Krayem, M., Deluchat, V., Hourdin, P., Fondanèche, P., Des Etangs, F. L., Kazpard, V., Moesch, C., &Labrousse, P. (2018). Combined effect of copper and hydrodynamic conditions on Myriophyllumalterniflorum biomarkers. Chemosphere, 199, 427-434. https://doi.org/10.1016/j.chemosphere.2018.02.050
Kumar, S., Thorat, S. S., Mondal, G., Singh, P. D., Labala, R. K., Singh, L. A., Somkuwar, B. G., &Thongam, B. (2019). Morphological characterization and ecology of Utricularia aurea Lour. Adv Plants AgricRes, 9(1), 61-63. doi: 10.15406/apar.2019.09.00412
Kurniawan, A., & Mustikasari, D. (2019). Review: Mekanisme akumulasi logamberat di ekosistempascatambang timah. Jurnal Ilmu Lingkungan, 17(3), 408-415. https://doi.org/10.14710/jil.17.3.408-415
Maksimović, T., Rončević, S. & Kukavica, B. (2019). Utricularia vulgaris L. and Salvinia natans L. All. heavy metal (Fe, Mn, Cu, Zn and Pb) bioaccumulation specificity in the area of Bardača fishpond. Ekológia, 38(3), 201-213. https://doi.org/10.2478/eko-2019-0016

Miranda, V. F., Silva, S. R., Reut, M. S., Dolsan, H., Stolarczyk, P., Rutishauser, R., & Płachno, B. J. (2021). A historical perspective of bladderworts (Utricularia): Traps, carnivory and body architecture. Plants, 10(12), 2656. https://doi.org/10.3390/plants10122656
Mishra, S., & Kumar, S. (2019). Ecological mapping and pharmacological activity of Utricularia aurea Lour.: a carnivorous plant of Odisha. Medico-Biowealth of Odisha. Ambika Prasad Research FoundationPublishers. Bhubaneswar. 11-23. https://www.researchgate.net/publication/340886563
Mushtaq, N., Singh, D. V., Bhat, R. A., Dervash, M. A., & Hameed, O. B. (2020). Freshwater contamination: sources and hazards to aquatic biota. In Fresh Water Pollution Dynamics and Remediation. Springer, Singapore. https://doi.org/10.1007/978-981-13-8277-2_3
Płachno, B.J., Stpiczyńska, M., Adamec, L., Miranda, V. F. O. & Świątek, P. (2018). Nectar trichome structure of aquatic bladderworts from the section Utricularia (Lentibulariaceae) with observation of flower visitors and pollinators. Protoplasma, 255(4), 1053-1064. https://doi.org/10.1007/s00709-018-1216-2
Pratama, D. A., Noor, A. M. A., & Sanjaya, A. S. (2017). Efektivitas ampas teh sebagai adsorbenalternatiflogam Fe dan Cu pada air sungai Mahakam. Jurnal Integrasi Proses, 6(3), 131-138. http://dx.doi.org/10.36055/jip.v6i3.1560
Prausová, R., Holzbauerová, H., Špringrová, I., Jará, N., Šafářová, L., Cross, A. T., & Adamec, L. (2022). Seed germination ecology of common bladderwort (Utricularia vulgaris L.). Aquatic Botany, 182, 103-545. https://doi.org/10.1016/j.aquabot.2022.103545
Reifenrath, K., Theisen, I., Schnitzler, J., Porembski, S., & Barthlott, W. (2006). Trap architectures carnivorous Utricularia (Lentibulariaceae). Flora-Morphology, Distribution, Functional EcologyofPlants, 201(8), 597-605. https://doi.org/10.1016/j.flora.2005.12.004
Rezania, S., Taib, S. M., Din, M. F. M., Dahalan, F. A., & Kamyab, H. (2016). Comprehensive review on phytotechnology: heavy metals removal by diverse aquatic plants species from wastewater. Journal of hazardous materials, 318, 587-599. https://doi.org/10.1016/j.jhazmat.2016.07.053
Sirová, D., Adamec, L. & Vrba, J. 2003. Enzymatic activities in traps of four aquatic species of the carnivorous genus Utricularia. New Phytologist, 159(3), 669-675. https://doi.org/10.1046/j.1469-8137.2003.00834.x
Supriyantini, E., & Endrawati, H. (2015). Kandungan logam berat besi (Fe) pada air, sedimen, dankeranghijau (Perna viridis) di perairan Tanjung Emas Semarang. Jurnal Kelautan Tropis, 18(1), 38-45. https://doi.org/10.14710/jkt.v18i1.512
Ujianti, R. M. D., & Androva, A. L. T. H. E. S. A. (2020). Heavy metal toxicity and the influence of water quality in water shed for enhancing fisheries food security. In IOP Conference Series: Materials Science and Engineering, 846 (1), 012049. doi: 10.1088/1757-899X/846/1/012049
Zhang, H., Yuan, X., Xiong, T., Wang, H., & Jiang, L. (2020). Bioremediation of co-contaminated soil with heavy metals and pesticides: Influence factors, mechanisms and evaluation methods. Chemical Engineering Journal, 398, 125-657. https://doi.org/10.1016/j.cej.2020.12565
Published
2024-09-30
How to Cite
Su’udi, M., Sururin, F., & Ardiyanti, K. (2024). The Ability of Aquatic Carnivorous Plants Utricularia vulgaris L. as Heavy Metal Bioremediators. Indonesian Journal of Life Sciences, 6(2), 61-68. https://doi.org/https://doi.org/10.54250/ijls.v6i2.196
Section
Bio-product and Services for Sustainable Society