CRISPR-Cas9 Mediated Gene Therapy: Current Advancements and Applications Towards Tay-Sachs and Sandhoff Disease

  • Richelle Bertly Josefano Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia
  • Abigail Yoel Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia
  • Beatrice Miranda Japri Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia
  • Felicia Lael Belva Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia
  • Clara Ayu Widjojo Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia
  • Rio Hermantara Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia
Keywords: CRISPR-Cas9, Gene therapy, Tay-Sachs disease, Sandhoff disease

Abstract

Tay-Sachs disease and Sandhoff disease are neurodegenerative diseases that are classified as autosomal recessive lysosomal storage disorders. They are commonly caused by a mutation that occurs in the HEXA and HEXB genes, which are responsible for encoding beta-hexosaminidase-A (Hex A) and beta-hexosaminidase-B (Hex B). Furthermore, Sandhoff's disease symptoms include spinocerebellar ataxia, motor degeneration, sensorimotor neuropathy, tremor, dystonia, and psychosis, which are comparable to Tay-Sachs disease symptoms. The current treatment of Tay-sachs include enzyme replacement therapy, bone marrow transplantation, and administration of genetically modified stem cells with HexA which do not impede neurological dysfunction and were not effective in the long run. On the other hand, there is no standard treatment for Sandhoff but it utilizes bone marrow transplantation which is ineffective. So far, there is only one available gene editing treatment. Therefore, it might be necessary to consider gene editing as a prospective treatment for both diseases, with CRISPR being a primary method. By utilizing Adeno-associated viruses (AAV) as the delivery method for the CRISPR-Cas9 system, it can replace the defective HEXA or HEXB gene with a modified gene termed HEXM, which was found to be the gene codes for the Hex subunit of the same enzyme that is missing in Tay-Sachs and Sandhoff disease. Several challenges of implementing CRISPR-Cas9 technology to treat Tay-Sachs and Sandhoff disease include off-target mutations, unintentional cleavage of the non-targeted sites, and bioethical challenges. Further studies can be explored using various CRISPR-Cas9 systems to improve its efficiency.

Downloads

Download data is not yet available.

Author Biographies

Richelle Bertly Josefano, Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia

Department of Biotechnology, Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia

Abigail Yoel, Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia

Department of Biotechnology, Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia

Beatrice Miranda Japri, Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia

Department of Biotechnology, Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia

Felicia Lael Belva, Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia

Department of Biotechnology, Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia

Clara Ayu Widjojo, Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia

Department of Biotechnology, Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia

Rio Hermantara, Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia

Department of Biomedicine, Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia

References

Anzalone, A. V., Randolph, P. B., Davis, J. R., Sousa, A. A., Koblan, L. W., Levy, J. M., ... & Liu, D. R. (2019). Search-and-replace genome editing without double-strand breaks or donor DNA. Nature, 576(7785), 149-157. 10.1038/s41586-019-1711-4
American Society of Gene + Cell Therapy. Tay-Sachs and Sandhoff Disease. (n.d.). American Society of Gene + Cell Therapy: Patient Education. https://patienteducation.asgct.org/disease-treatments/gm2-tay-sachs-sandhoff
Anwar, W. A., Khyatti, M., & Hemminki, K. (2014). Consanguinity and genetic diseases in North Africa and immigrants to Europe. European journal of public health, 24 Suppl 1, 57–63. https://doi.org/10.1093/eurpub/cku104
Ayanoğlu, F. B., Elçin, A. E., & Elçin, Y. M. (2020). Bioethical issues in genome editing by CRISPR-Cas9 technology. Turkish journal of biology = Turk biyoloji dergisi, 44(2), 110–120. https://doi.org/10.3906/biy-1912-52
Barrangou, R. (2013). CRISPR‐Cas systems and RNA‐guided interference. Wiley Interdisciplinary Reviews: RNA, 4(3), 267-278. 10.1002/wrna.1159
Bollen, Y., Post, J., Koo, B. K., & Snippert, H. J. (2018). How to create state-of-the-art genetic model systems: strategies for optimal CRISPR-mediated genome editing. Nucleic acids research, 46(13), 6435-6454. https://doi.org/10.1093/nar/gky571
Brokowski, C. (2018). Do CRISPR germline ethics statements cut it?. The CRISPR journal, 1(2), 115-125. 10.1089/crispr.2017.0024
Chavany, C., & Jendoubi, M. (1998). Biology and potential strategies for the treatment of GM2 gangliosidoses. Molecular medicine today, 4(4), 158-165. 10.1016/s1357-4310(98)01227-1
Cho, S. W., Kim, S., Kim, Y., Kweon, J., Kim, H. S., Bae, S., & Kim, J. S. (2014). Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome research, 24(1), 132-141. 10.1101/gr.162339.113
Collins, F. (2019, November 5). Tay-Sachs disease: Gene-editing advance puts more gene-based cures within reach. National Institute of Health. https://directorsblog.nih.gov/tag/tay-sachs-disease/
Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., ... & Zhang, F. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science, 339(6121), 819-823. 10.1126/science.1231143
Contreras, J. L., & Sherkow, J. S. (2017). CRISPR, surrogate licensing, and scientific discovery. Science, 355(6326), 698-700. 10.1126/science.aal4222
Cox, T. M., Aerts, J. M., Andria, G., Beck, M., Belmatoug, N., Bembi, B., Chertkoff, R., Vom Dahl, S., Elstein, D., Erikson, A., Giralt, M., Heitner, R., Hollak, C., Hrebicek, M., Lewis, S., Mehta, A., Pastores, G. M., Rolfs, A., Sa Miranda, M. C., & Zimran, A. (2003). The role of the iminosugar n‐butyldeoxynojirimycin (Miglustat) in the management of type I (Non‐neuronopathic) gaucher disease: A position statement. Journal of Inherited Metabolic Disease, 26(6), 513–526. https://doi.org/10.1023/a:1025902113005
Cox, D. B. T., Platt, R. J., & Zhang, F. (2015). Therapeutic genome editing: Prospects and challenges. Nature Medicine, 21(2), 121–131. https://doi.org/10.1038/nm.3793
Das, R., Wexler, P., Pirooznia, M., & Elhaik, E. (2017). The Origins of Ashkenaz, Ashkenazic Jews, and Yiddish. Frontiers in Genetics, 8. https://doi.org/10.3389/fgene.2017.00087
Demir, S., Timur, Z., Ateş, N., Martínez, L., & Seyrantepe, V. (2020). GM2 ganglioside accumulation causes neuroinflammation and behavioral alterations in a mouse model of early onset Tay-Sachs disease. Journal Of Neuroinflammation, 17(1). doi: 10.1186/s12974-020-01947-6
Dersh, D., Iwamoto, Y., & Argon, Y. (2016). Tay–Sachs disease mutations in HEXA target the α chain of hexosaminidase A to endoplasmic reticulum–associated degradation. Molecular Biology Of The Cell, 27(24), 3813-3827. doi: 10.1091/mbc.e16-01-0012
D’Souza, R., Mathew, M., & Surapaneni, K. M. (2023). A Scoping Review on the Ethical Issues in the Use of CRISPR-Cas9 in the Creation of Human Disease Models. Journal of Clinical & Diagnostic Research, 17(12). DOI: 10.7860/JCDR/2023/68275.18809
Frangoul, H., Altshuler, D., Cappellini, M. D., Chen, Y. S., Domm, J., Eustace, B. K., Foell, J., de la Fuente, J., Grupp, S., Handgretinger, R., Ho, T. W., Kattamis, A., Kernytsky, A., Lekstrom-Himes, J., Li, A. M., Locatelli, F., Mapara, M. Y., de Montalembert, M., Rondelli, D., Sharma, A., … Corbacioglu, S. (2021). CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia. The New England journal of medicine, 384(3), 252–260. https://doi.org/10.1056/NEJMoa2031054
Fichtner, F., Urrea Castellanos, R., & Ülker, B. (2014). Precision genetic modifications: a new era in molecular biology and crop improvement. Planta, 239(4), 921-939. https://doi.org/10.1007/s00425-014-2029-y
Flotte, T. (2021, January 29 - 2028, June). A dose-escalation and safety & efficacy study of AXO-AAV-GM2 in Tay-Sachs or Sandhoff disease. Identifier NCT04669535. https://clinicaltrials.gov/ct2/show/NCT04669535
Flotte, T. R., Cataltepe, O., Puri, A., Batista, A. R., Moser, R., McKenna-Yasek, D., ... & Sena-Esteves, M. (2022). AAV gene therapy for Tay-Sachs disease. Nature medicine, 28(2), 251-259. 10.1038/s41591-021-01664-4
Gonzalez-Avila, L. U., Vega-López, J. M., Pelcastre-Rodríguez, L. I., Cabrero-Martínez, O. A., Hernández-Cortez, C., & Castro-Escarpulli, G. (2021). The Challenge of CRISPR-Cas toward bioethics. Frontiers in Microbiology, 12, 657981. https://doi.org/10.3389/fmicb.2021.657981
Gray, D. H., Santos, J., Keir, A. G., Villegas, I., Maddock, S., Trope, E. C., Long, J. D., & Kuo, C. Y. (2022). A comparison of DNA repair pathways to achieve a site-specific gene modification of the Bruton’s tyrosine kinase gene. Molecular Therapy - Nucleic Acids, 27, 505–516. https://doi.org/10.1016/j.omtn.2021.12.014
Gray-Edwards, H. L., Randle, A. N., Maitland, S. A., Benatti, H. R., Hubbard, S. M., Canning, P. F., ... & Martin, D. R. (2018). Adeno-associated virus gene therapy in a sheep model of Tay–Sachs disease. Human Gene Therapy, 29(3), 312-326. 10.1089/hum.2017.163
Henderson, H. (2021). CRISPR clinical trials: A 2021 update. Innovative Genomics Institute (IGI). Retrieved 6 April 2022, from https://innovativegenomics.org/news/crispr-clinical-trials-2021/
Henderson, H. (2022). CRISPR clinical trials: A 2022 Update. Innovative Genomics Institute (IGI). Retrieved 27 June 2022, from https://innovativegenomics.org/news/crispr-clinical-trials-2022/
HEXA gene. (2021, September 8). Medline Plus. https://medlineplus.gov/genetics/gene/hexa/#:~:text=Normal%20Function&text=One%20alpha%20subunit%20joins%20with,cord%20(central%20nervous%20system).
Hilton, I. B., & Gersbach, C. A. (2015). Enabling functional genomics with genome engineering. Genome research, 25(10), 1442-1455. 10.1101/gr.190124.115
Hoffman, J. D., Greger, V., Strovel, E. T., Blitzer, M. G., Umbarger, M. A., Kennedy, C., Bishop, B., Saunders, P., Porreca, G. J., Schienda, J., Davie, J., Hallam, S., & Towne, C. (2013). Next-generation DNA sequencing of HEXA: a step in the right direction for carrier screening. Molecular genetics & genomic medicine, 1(4), 260–268. https://doi.org/10.1002/mgg3.37
Kaneko, T., & Nakagawa, Y. (2020). Genome editing of rodents by electroporation of CRISPR-Cas9 into frozen-warmed pronuclear-stage embryos. Cryobiology, 92, 231-234. 10.1016/j.cryobiol.2020.01.016
Kang, S., Song, S., Lee, J., Choi, J. & Kang, J. (2013). Adult Sandhoff Disease with 2 mutations in the HEXB gene presenting as Brachial Amyotrophic Diplegia. Journal of Clinical Neuromuscular Disease, 15(2), pp.47-51. 10.1097/CND.0000000000000014
Karimzadeh, P., Jafari, N., Nejad Biglari, H., Jabbeh Dari, S., Ahmad Abadi, F., Alaee, M. R., Nemati, H., Saket, S., Tonekaboni, S. H., Taghdiri, M. M., & Ghofrani, M. (2014). GM2-Gangliosidosis (Sandhoff and Tay Sachs disease): Diagnosis and Neuroimaging Findings (An Iranian Pediatric Case Series). Iranian journal of child neurology, 8(3), 55–60.
Kattenhorn, L. M., Tipper, C. H., Stoica, L., Geraghty, D. S., Wright, T. L., Clark, K. R., & Wadsworth, S. C. (2016). Adeno-associated virus gene therapy for liver disease. Human gene therapy, 27(12), 947-961.https://doi.org/10.1089/hum.2016.160
Khatodia, S., Bhatotia, K., Passricha, N., Khurana, S. M. P., & Tuteja, N. (2016). The CRISPR/Cas genome-editing tool: application in improvement of crops. Frontiers in plant science, 7, 506. https://doi.org/10.3389/fpls.2016.00506
Kim, H., & Kim, J. S. (2014). A guide to genome engineering with programmable nucleases. Nature Reviews Genetics, 15(5), 321-334. https://doi.org/10.1038/nrg3686
Kosicki, M., Tomberg, K., & Bradley, A. (2018). Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements. Nature biotechnology, 36(8), 765-771. 10.1038/nbt.4192
Kot, S., Karumuthil-Melethil, S., Woodley, E., Zaric, V., Thompson, P., Chen, Z., Lykken, E., Keimel, J. G., Kaemmerer, W. F., Gray, S. J. & Walia, J. S. (2021). Investigating immune responses to the scAAV9-HEXM gene therapy treatment in Tay-Sachs Disease and Sandhoff Disease mouse models. International Journal of Molecular Sciences, 22(13), 6751. https://doi.org/10.3390/ijms22136751
Kumar, N., & Rodríguez, S. A. (2018). Carrier screening for inherited genetic disorders: A review of current practices. Reproductomics, 63-75. doi: 10.1016/b978-0-12-812571-7.00005-8
Kumar, N., Stanford, W., de Solis, C., Aradhana, Abraham, N. D., Dao, T. J., Thaseen, S., Sairavi, A., Gonzalez, C. U., & Ploski, J. E. (2018). The Development of an AAV-Based CRISPR SaCas9 Genome Editing System That Can Be Delivered to Neurons in vivo and Regulated via Doxycycline and Cre-Recombinase. Frontiers in Molecular Neuroscience, 11, 413. doi: 10.3389/fnmol.2018.00413
Kumari, A. (2017). Sweet biochemistry: Remembering structures, cycles, and pathways by mnemonics. Academic Press.
Lahey, H. G., Webber, C. J., Golebiowski, D., Izzo, C. M., Horn, E., Taghian, T., Rodriguez, P., Batista, A. R., Ellis, L. E., Hwang, M., Martin, D. R., Gray-Edwards, H., & Sena-Esteves, M. (2020). Pronounced therapeutic benefit of a single bidirectional AAV vector administered systemically in Sandhoff Mice. Molecular Therapy, 28(10), 2150–2160. https://doi.org/10.1016/j.ymthe.2020.06.021
Ledford, H. (2019). Super-precise new CRISPR tool could tackle a plethora of genetic diseases. Nature, 574(7779), 464-466. 10.1038/d41586-019-03164-5
Lemieux, M. J., Mark, B. L., Cherney, M. M., Withers, S. G., Mahuran, D. J., & James, M. N. (2006). Crystallographic structure of human beta-hexosaminidase A: interpretation of Tay-Sachs mutations and loss of GM2 ganglioside hydrolysis. Journal of molecular biology, 359(4), 913–929. https://doi.org/10.1016/j.jmb.2006.04.004
Lino, C. A., Harper, J. C., Carney, J. P., & Timlin, J. A. (2018). Delivering CRISPR: A review of the challenges and approaches. Drug Delivery, 25(1), 1234–1257. https://doi.org/10.1080/10717544.2018.1474964
Lopez Vasquez, K. (2020). Tay-Sachs disease. Journal of Neonatal Nursing, 26(6), 316–318. https://doi.org/10.1016/j.jnn.2020.02.001
Lorenzo, D., Esquerda, M., Palau, F., & Cambra, F. J. (2022). Ethics and genomic editing using the crispr-cas9 technique: Challenges and conflicts. Nanoethics, 16(3), 313-321. https://doi.org/10.1007/s11569-022-00425-y
Lyn, N., Pulikottil-Jacob, R., Rochmann, C., Krupnick, R., Gwaltney, C., Stephens, N., ... & Hamed, A. (2020). Patient and caregiver perspectives on burden of disease manifestations in late-onset Tay-Sachs and Sandhoff diseases. Orphanet Journal of Rare Diseases, 15(1), 1-14. doi: 10.1186/s13023-020-01354-3
Maeder, M. L., & Gersbach, C. A. (2016). Genome-editing technologies for gene and cell therapy. Molecular Therapy, 24(3), 430–446. https://doi.org/10.1038/mt.2016.10
Maegawa, G. H., Banwell, B. L., Blaser, S., Sorge, G., Toplak, M., Ackerley, C., Hawkins, C., Hayes, J., & Clarke, J. T. (2009). Substrate reduction therapy in juvenile GM2 gangliosidosis. Molecular genetics and metabolism, 98(1-2), 215–224. https://doi.org/10.1016/j.ymgme.2009.06.005
Mahuran, D., Tropak, M., & Withers, S. (2004). Treatment of tay sachs or sandhoff diseases by enhancing hexosaminidase activity (WO2004103368A1). Sim & McBurney.
Maier, T., Strater, N., Schuette, ChristinaG., Klingenstein, R., Sandhoff, K., & Saenger, W. (2003). The X-ray crystal structure of human β-hexosaminidase B provides new insights into Sandhoff disease. Journal of Molecular Biology, 328(3), 669–681. https://doi.org/10.1016/s0022-2836(03)00311-5
Manghwar, H., Li, B., Ding, X., Hussain, A., Lindsey, K., Zhang, X., & Jin, S. (2020). CRISPR/Cas systems in genome editing: methodologies and tools for sgRNA design, off‐target evaluation, and strategies to mitigate off‐target effects. Advanced science, 7(6), 1902312. 10.1002/advs.201902312
Mani, I. (2021). CRISPR-Cas9 for treating hereditary diseases. Progress in Molecular Biology and Translational Science, 165–183. https://doi.org/10.1016/bs.pmbts.2021.01.017
Marshall, J., Nietupski, J. B., Park, H., Cao, J., Bangari, D. S., Silvescu, C., Wilper, T., Randall, K., Tietz, D., Wang, B., Ying, X., Leonard, J. P., & Cheng, S. H. (2019). Substrate Reduction Therapy for Sandhoff Disease through Inhibition of Glucosylceramide Synthase Activity. Molecular therapy : the journal of the American Society of Gene Therapy, 27(8), 1495–1506. 10.1016/j.ymthe.2019.05.018 https://doi.org/10.1016/j.ymthe.2019.05.018
Matsuoka, K., Tamura, T., Tsuji, D., Dohzono, Y., Kitakaze, K., Ohno, K., Saito, S., Sakuraba, H., & Itoh, K. (2011). Therapeutic potential of intracerebroventricular replacement of modified human β-hexosaminidase B for GM2 gangliosidosis. Molecular therapy : the journal of the American Society of Gene Therapy, 19(6), 1017–1024. 10.1038/mt.2011.27
Matute D. R. (2013). The role of founder effects on the evolution of reproductive isolation. Journal of evolutionary biology, 26(11), 2299–2311. https://doi.org/10.1111/jeb.12246
Mayo Clinic. Tay-Sachs disease - Symptoms and causes. Retrieved 17 March 2022, from https://www.mayoclinic.org/diseases-conditions/tay-sachs-disease/symptoms-causes/syc-20378190#:~:text=Overview,function+of+the+nerve+cells.
McDowell, G. A., Mules, E. H., Fabacher, P., Shapira, E., & Blitzer, M. G. (1992). The presence of two different infantile Tay-Sachs disease mutations in a Cajun population. American journal of human genetics, 51(5), 1071–1077.
Naeem, M., Majeed, S., Hoque, M. Z., & Ahmad, I. (2020). Latest developed strategies to minimize the off-target effects in CRISPR-Cas-mediated genome editing. Cells, 9(7), 1608. 10.3390/cells9071608
Naso, M. F., Tomkowicz, B., Perry, W. L., 3rd, & Strohl, W. R. (2017). Adeno-Associated Virus (AAV) as a Vector for Gene Therapy. BioDrugs : clinical immunotherapeutics, biopharmaceuticals and gene therapy, 31(4), 317–334. https://doi.org/10.1007/s40259-017-0234-5
National Institutes of Health (NIH). (2023). Sandhoff disease. National Institute of Neurological Disorders and Stroke. https://www.ninds.nih.gov/health-information/disorders/sandhoff-disease#:~:text=There%20is%20no%20specific%20treatment,about%20disorders%20and%20improve%20care.
National Organization for Rare Disorders (NORD). (2020, August 7). Sandhoff disease. Retrieved May 2, 2022, from https://rarediseases.org/rare-diseases/sandhoff-disease/#:%7E:text=Sandhoff%20disease%20is%20a%20rare%20disorder%20that%20is,affect%201%20in%201%2C000%2C000%20individuals.
Nayarisseri, A., & Limaye, A. (2019). Machine learning models to predict the precise progression of Tay-Sachs and related disease. International Conference on Multidisciplinary Sciences. https://doi.org/10.3390/mol2net-05-06180
Norflus, F., Tifft, C. J., McDonald, M. P., Goldstein, G., Crawley, J. N., Hoffmann, A., Sandhoff, K., Suzuki, K., & Proia, R. L. (1998). Bone marrow transplantation prolongs life span and ameliorates neurologic manifestations in Sandhoff disease mice. The Journal of clinical investigation, 101(9), 1881–1888. https://doi.org/10.1172/JCI2127
Osmosis. (2019, November 14). Tay-Sachs disease - causes, symptoms, diagnosis, treatment, pathology [Video]. Youtube. https://www.youtube.com/watch?v=2z3nSnBe8Vg
Osmon, K. J., Woodley, E., Thompson, P., Ong, K., Karumuthil-Melethil, S., Keimel, J. G., ... & Walia, J. S. (2016). Systemic gene transfer of a hexosaminidase variant using an scAAV9. 47 vector corrects GM2 gangliosidosis in Sandhoff mice. Human gene therapy, 27(7), 497-508. http://dx.doi.org/10.1089/hum.2016.015
Ostrer, H., & Skorecki, K. (2012). The population genetics of the Jewish people. Human Genetics, 132(2), 119–127. https://doi.org/10.1007/s00439-012-1235-6
Ou, L., Przybilla, M. J., Tăbăran, A. F., Overn, P., O’Sullivan, M. G., Jiang, X., ... & Whitley, C. B. (2020). A novel gene editing system to treat both Tay–Sachs and Sandhoff diseases. Gene therapy, 27(5), 226-236. 10.1038/s41434-019-0120-5
Parker, J. N., & Parker, P. M. (2007). Sandhoff Disease: A bibliography and dictionary for physicians, patients, and genome researchers. ICON Group International Inc.
Parums D. V. (2024). Editorial: First Regulatory Approvals for CRISPR-Cas9 Therapeutic Gene Editing for Sickle Cell Disease and Transfusion-Dependent β-Thalassemia. Medical science monitor : international medical journal of experimental and clinical research, 30, e944204. https://doi.org/10.12659/MSM.944204
Patterson, M. C. (2013). Gangliosidoses. Handbook of Clinical Neurology, 113, 1707-1708. 10.1016/B978-0-444-59565-2.00039-3
Picache, J. A., Zheng, W., & Chen, C. Z. (2022). Therapeutic strategies For tay-sachs disease. Frontiers in pharmacology, 13, 906647. https://doi.org/10.3389/fphar.2022.906647
Prabu, S. L., Sara Josen, T., Umamaheswari, A., & Puratchikody, A. (2022). Sandhoff disease: Pathology and advanced treatment strategies. Drug Delivery Systems for Metabolic Disorders, 351–358. https://doi.org/10.1016/b978-0-323-99616-7.00011-6
Qian, Y., Zhao, D., Sui, T., Chen, M., Liu, Z., Liu, H., … Li, Z. (2021). Efficient and precise generation of Tay–Sachs disease model in rabbit by prime editing system. Cell Discovery, 7(1). doi:10.1038/s41421-021-00276-z
Ramani, P. K., & Sankaran, B. P. (2021). Tay-Sachs disease. In StatPearls. StatPearls Publishing.
Redman, M., King, A., Watson, C., & King, D. (2016). What is CRISPR-Cas9? Archives of Disease in Childhood - Education & Practice Edition, 101(4), 213–215. https://doi.org/10.1136/archdischild-2016-310459
Resnik, R., Lockwood, C. J., Moore, T., Copel, J., & Silver, R. M. (2019). Creasy and resnik’s Maternal-Fetal medicine: Principles and practice (1st ed.). Elsevier.
Robinson, J., Kyriazis, C. C., Yuan, S. C., & Lohmueller, K. E. (2023). Deleterious Variation in Natural Populations and Implications for Conservation Genetics. Annual review of animal biosciences, 11, 93–114. https://doi.org/10.1146/annurev-animal-080522-093311
Salloch, S., Vollmann, J., & Schildmann, J. (2014). Ethics by opinion poll? The functions of attitudes research for normative deliberations in medical ethics. Journal of Medical Ethics, 40(9), 597-602. 10.1136/medethics-2012-101253
Sander, J. D., & Joung, J. K. (2014). CRISPR-Cas systems for editing, regulating and targeting genomes. Nature biotechnology, 32(4), 347-355. https://doi.org/10.1038/nbt.2842
Sandhoff, K. (2016). Neuronal sphingolipidoses: membrane lipids and sphingolipid activator proteins regulate lysosomal sphingolipid catabolism. Biochimie, 130, 146-151. 10.1016/j.biochi.2016.05.004
Savic, N., Ringnalda, F. C., Lindsay, H., Berk, C., Bargsten, K., Li, Y., … Schwank, G. (2018). Covalent linkage of the DNA repair template to the CRISPR-Cas9 nuclease enhances homology-directed repair. eLife, 7. doi:10.7554/elife.33761
Sehgal, A. (2021, March 12 - 2027, March 12). First-in-human study of TSHA-101 gene therapy for treatment of infantile onset GM2 Gangliosidosis. Identifier NCT04798235. https://clinicaltrials.gov/ct2/show/NCT04798235
Scholefield, J. & Harrison, P. T. (2021). Prime editing - an update on the field. Gene Therapy, 28, 396-401. https://doi.org/10.1038/s41434-021-00263-9
Shelton, M. L. (2019, October 23). First evidence of clinical stabilization in Tay-Sachs presented at European Society of Gene & Cell Therapy Congress: Terence R. Flotte reports on investigational gene therapy developed at UMass Medical School. UMass Chan Medical School. https://www.umassmed.edu/news/news-archives/2019/10/first-evidence-of-clinical-stabilization-in-tay-sachs-presented-at-european-society-of-gene--cell-therapy-congress/
Sherkow, J. S. (2017). Genome editing: CRISPR, patents, and the public health. The Yale Journal of Biology and Medicine, 90(4), 667.
Solovyeva, V. V., Shaimardanova, A. A., Chulpanova, D. S., Kitaeva, K. V., Chakrabarti, L. & Rizvanov, A. A. (2018). New approaches to Tay-Sachs disease therapy. Frontiers in Physiology, 9, 1663, 1-11. https://doi.org/10.3389/fphys.2018.01663
Solvang, G. M. (2021). CRISPR-mediated human germline editing: benefits, risks, and why a ban is unethical (Master's thesis, Norwegian University of Life Sciences, Ås). https://hdl.handle.net/11250/2832138
Sonderfeld-Fresko, S., & Proia, R. L. (1988). Synthesis and assembly of a catalytically active lysosomal enzyme, beta-hexosaminidase B, in a cell-free system. The Journal of biological chemistry, 263(26), 13463–13469. https://doi.org/10.1016/S0021-9258(18)37728-7
Song, B., Yang, S., Hwang, G.-H., Yu, J., & Bae, S. (2021). Analysis of NHEJ-based DNA repair after CRISPR-mediated DNA cleavage. International Journal of Molecular Sciences, 22(12), 6397. https://doi.org/10.3390/ijms22126397
Stepien, K. M., Lum, S. H., Wraith, J. E., Hendriksz, C. J., Church, H. J., Priestman, D., Platt, F. M., Jones, S., Jovanovic, A., & Wynn, R. (2018). Haematopoietic stem cell transplantation arrests the progression of neurodegenerative disease in late-onset Tay-Sachs disease. JIMD reports, 41, 17–23. https://doi.org/10.1007/8904_2017_76
Tay-Sachs disease - Diagnosis & treatment. (n.d.). Mayo Clinic. https://www.mayoclinic.org/diseases-conditions/tay-sachs-disease/diagnosis-treatment/drc-20378193
Taysha Gene Therapies. (2022, January 27). Taysha Gene Therapies Announces Positive Initial Biomarker Data for TSHA-101, the First Bicistronic Gene Therapy in Clinical Development, Demonstrating Normalization of β-Hexosaminidase A Enzyme Activity in Patients With GM2 Gangliosidosis. https://ir.tayshagtx.com/node/7826/pdf
Tettamanti, G., & Anastasia, L. (2009). Chemistry, tissue and cellular distribution, and developmental profiles of neural sphingolipids. Handbook of Neurochemistry and Molecular Neurobiology, 99–171. https://doi.org/10.1007/978-0-387-30378-9_6
Tim-Aroon, T., Wichajarn, K., Katanyuwong, K., Tanpaiboon, P., Vatanavicharn, N., Sakpichaisakul, K., ... & Wattanasirichaigoon, D. (2021). Infantile onset Sandhoff disease: clinical manifestation and a novel common mutation in Thai patients. BMC pediatrics, 21(1), 1-9. 10.1186/s12887-020-02481-3
Travis, J. (2015a). Inside the summit on human gene editing: A reporter’s notebook. Science, 10. https://www.science.org/content/article/inside-summit-human-gene-editing-reporter-s-notebook
Travis, J. (2015b). Embryo editing to make babies would be “irresponsible,” says DNA summit statement. Science, 10. https://www.science.org/content/article/embryo-editing-make-babies-would-be-irresponsible-says-dna-summit-statement
Tschaharganeh, D. F., Lowe, S. W., Garippa, R. J., & Livshits, G. (2016). Using CRISPR/CAS to study gene function and model disease in vivo. The FEBS Journal, 283(17), 3194–3203. https://doi.org/10.1111/febs.13750
UMass Medical School Communications. (2021, April 27). USA Today reports on first baby in gene therapy clinical trial for Sandhoff, Tay-Sachs diseases: Investigational treatment for rare and fatal genetic disorders based on discoveries made at UMass medical school. UMass Chan Medical School. https://www.umassmed.edu/news/news-archives/2021/04/usa-today-reports-on-first-baby-in-gene-therapy-clinical-trial-for-sandhoff-tay-sachs-diseases/
Ureña-Bailén, G., Lamsfus-Calle, A., Daniel-Moreno, A., Raju, J., Schlegel, P., Seitz, C., ... & Mezger, M. (2020). CRISPR-Cas9 technology: towards a new generation of improved CAR-T cells for anticancer therapies. Briefings in functional genomics, 19(3), 191-200. https://doi.org/10.1093/bfgp/elz039
Urnov F. D. (2021). CRISPR-Cas9 can cause chromothripsis. Nature genetics, 53(6), 768–769. https://doi.org/10.1038/s41588-021-00881-4
Villamizar-Schiller, I. T., Pabón, L. A., Hufnagel, S. B., Serrano, N. C., Karl, G., Jefferies, J. L., Hopkin, R. J., & Prada, C. E. (2015). Neurological and cardiac responses after treatment with miglustat and a ketogenic diet in a patient with Sandhoff disease. European journal of medical genetics, 58(3), 180–183. https://doi.org/10.1016/j.ejmg.2014.12.009
Vertex Pharmaceuticals. (n.d.). CASGEVY® (exagamglogene autotemcel). Clinical Study Information. https://www.casgevy.com/sickle-cell-disease/study-information
Wada, R., Tifft, C. J., & Proia, R. L. (2000). Microglial activation precedes acute neurodegeneration in Sandhoff disease and is suppressed by bone marrow transplantation. Proceedings of the National Academy of Sciences of the United States of America, 97(20), 10954–10959. https://doi.org/10.1073/pnas.97.20.10954
Wang, B. (2015). Disruptive CRISPR gene therapy is 150 times cheaper than zinc fingers and CRISPR is faster and more precise. Next Big Future.
Wang, T., Wei, J. J., Sabatini, D. M., & Lander, E. S. (2014). Genetic screens in human cells using the CRISPR-Cas9 system. Science, 343(6166), 80–84. https://doi.org/10.1126/science.1246981
WHO. (2021). WHO issues new recommendations on human genome editing for the advancement of public health. Retrieved 29 August 2022, from https://www.who.int/news/item/12-07-2021-who-issues-new-recommendations-on-human-genome-editing-for-the-advancement-of-public-health
Wong, P. K., Cheah, F. C., Syafruddin, S. E., Mohtar, M. A., Azmi, N., Ng, P. Y., & Chua, E. W. (2021). CRISPR gene-editing models geared toward therapy for hereditary and developmental neurological disorders. Frontiers in pediatrics, 9. https://doi.org/10.3389/fped.2021.592571
Wu, S. S., Li, Q. C., Yin, C. Q., Xue, W., & Song, C. Q. (2020). Advances in CRISPR/cas-based gene therapy in human genetic diseases. Theranostics, 10(10), 4374–4382. https://doi.org/10.7150/thno.43360
Xu, C. L., Ruan, M., Mahajan, V. B., & Tsang, S. H. (2019). Viral delivery systems for CRISPR. Viruses, 11(1), 28. https://doi.org/10.3390/v11010028
Yang, H., Wang, H., Shivalila, C., Cheng, A., Shi, L., & Jaenisch, R. (2013). One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-Mediated genome engineering. Cell, 154(6), 1370–1379. https://doi.org/10.1016/j.cell.2013.08.022
Yasui, N., Takaoka, Y., Nishio, H., Nurputra, D., Sekiguchi, K., Hamaguchi, H., Kowa, H., Maeda, E., Sugano, A., Miura, K., Sakaeda, T., Kanda, F. and Toda, T. (2013). Molecular pathology of Sandhoff disease with p.Arg505Gln in HEXB: application of simulation analysis. Journal of Human Genetics, 58(9), pp.611-617.
Zhang, S., Shen, J., Li, D., & Cheng, Y. (2021). Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR-Cas9 genome editing. Theranostics, 11(2), 614. 10.7150/thno.47007
Zhang, Y., & Showalter, A. M. (2020). CRISPR-Cas9 genome editing technology: a valuable tool for understanding plant cell wall biosynthesis and function. Frontiers in Plant Science, 1779. https://doi.org/10.3389/fpls.2020.589517
Zhou, Y., Zhu, S., Cai, C., Yuan, P., Li, C., Huang, Y., & Wei, W. (2014). High-throughput screening of a CRISPR-Cas9 library for functional genomics in human cells. Nature, 509(7501), 487–491. https://doi.org/10.1038/nature13166
Published
2024-09-30
How to Cite
Josefano, R., Yoel, A., Japri, B., Belva, F., Widjojo, C., & Hermantara, R. (2024). CRISPR-Cas9 Mediated Gene Therapy: Current Advancements and Applications Towards Tay-Sachs and Sandhoff Disease. Indonesian Journal of Life Sciences, 6(2), 69-89. https://doi.org/https://doi.org/10.54250/ijls.v6i2.195
Section
Life Science for Health and Wellbeing