Effects of SARS CoV-2 mRNA Vaccines on Graves' Disease

  • Gabriella Gita Febriana Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia
Keywords: SARS CoV-2, mRNA vaccines, Graves’ disease

Abstract

The development of SARS CoV-2 mRNA vaccines has been claimed as a breakthrough in the medical research field. Moreover, these vaccines have been proven to reduce SARS CoV-2 transmission. However, the administration of these vaccines also found to interfere with thyroid functions in some individuals, which include newly onset Graves’ disease in immunocompromised people and worsening condition in Graves’ disease patients. This article reviews cases on Graves’ disease following the administration of first and second dose of SARS CoV-2 mRNA vaccines between the year 2021 and 2022. Furthermore, the possible mechanisms of Graves’ disease development following mRNA vaccines administration are being discussed in this review article.

Downloads

Download data is not yet available.

Author Biography

Gabriella Gita Febriana, Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia

Department of Biomedicine, Institut Bio Scientia Internasional Indonesia

References

Alberer, M., Gnad-Vogt, U., Hong, H. S., Mehr, K. T., Backert, L., Finak, G., Gottardo, R., Bica, M. A., Garofano, A., Koch, S. D., Fotin-Mleczek, M., Hoerr, I., Clemens, R., & von Sonnenburg, F. (2017). Safety and immunogenicity of a mRNA rabies vaccine in healthy adults: an open-label, non-randomised, prospective, first-in-human phase 1 clinical trial. The Lancet, 390(10101), 1511–1520. https://doi.org/10.1016/S0140-6736(17)31665-3
Antonelli, A., Ferrari, S. M., Ragusa, F., Elia, G., Paparo, S. R., Ruffilli, I., Patrizio, A., Giusti, C., Gonnella, D., Cristaudo, A., Foddis, R., Shoenfeld, Y., & Fallahi, P. (2020). Graves’ disease: Epidemiology, genetic and environmental risk factors and viruses. Best Practice & Research Clinical Endocrinology & Metabolism, 34(1), 101387. https://doi.org/10.1016/j.beem.2020.101387
Barlow, A. B. T., Wheatcroft, N., Watson, P., & Weetman, A. P. (1996). Association of HLA-DQA1*0501 with Graves’ disease in English Caucasian men and women. Clinical Endocrinology, 44(1), 73–77. https://doi.org/10.1046/j.1365-2265.1996.634454.x
Bostan, H., Ucan, B., Kizilgul, M., Calapkulu, M., Hepsen, S., Gul, U., Ozturk Unsal, I., & Cakal, E. (2022). Relapsed and newly diagnosed Graves’ disease due to immunization against COVID-19: A case series and review of the literature. Journal of Autoimmunity, 128, 102809. https://doi.org/10.1016/j.jaut.2022.102809
Brix, T. H., Kyvik, K. O., Christensen, K., & Hegedüs, L. (2001). Evidence for a Major Role of Heredity in Graves’ Disease: A Population-Based Study of Two Danish Twin Cohorts 1. The Journal of Clinical Endocrinology & Metabolism, 86(2), 930–934. https://doi.org/10.1210/jcem.86.2.7242
Carlé, A., Pedersen, I. B., Knudsen, N., Perrild, H., Ovesen, L., Rasmussen, L. B., & Laurberg, P. (2011). Epidemiology of subtypes of hyperthyroidism in Denmark: a population-based study. European Journal of Endocrinology, 164(5), 801–809. https://doi.org/10.1530/EJE-10-1155
Chee, Y. J., Liew, H., Hoi, W. H., Lee, Y., Lim, B., Chin, H. X., Lai, R. T. R., Koh, Y., Tham, M., Seow, C. J., Quek, Z. H., Chen, A. W., Quek, T. P. L., Tan, A. W. K., & Dalan, R. (2022). SARS-CoV-2 mRNA Vaccination and Graves’ Disease: A Report of 12 Cases and Review of the Literature. The Journal of Clinical Endocrinology & Metabolism, 107(6), e2324–e2330. https://doi.org/10.1210/clinem/dgac119
Corbett, K. S., Flynn, B., Foulds, K. E., Francica, J. R., Boyoglu-Barnum, S., Werner, A. P., Flach, B., O’Connell, S., Bock, K. W., Minai, M., Nagata, B. M., Andersen, H., Martinez, D. R., Noe, A. T., Douek, N., Donaldson, M. M., Nji, N. N., Alvarado, G. S., Edwards, D. K., … Graham, B. S. (2020). Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates. New England Journal of Medicine, 383(16), 1544–1555. https://doi.org/10.1056/NEJMoa2024671
Davies, T. F., Latif, R., & Yin, X. (2012). New Genetic Insights from Autoimmune Thyroid Disease. Journal of Thyroid Research, 2012, 1–6. https://doi.org/10.1155/2012/623852
di Filippo, L., Castellino, L., Allora, A., Frara, S., Lanzi, R., Perticone, F., Valsecchi, F., Vassallo, A., Giubbini, R., Rosen, C. J., & Giustina, A. (2022). Distinct Clinical Features of Post-COVID-19 Vaccination Early-onset Graves’ Disease. The Journal of Clinical Endocrinology & Metabolism, 108(1), 107–113. https://doi.org/10.1210/clinem/dgac550
Franco JS, A.-A. J. A. J. (2013). Thyroid disease and autoimmune diseases. In Anaya JM, Shoenfeld Y, & Rojas-Villarraga A (Eds.), Autoimmunity: From Bench to Bedside [Internet]. El Rosario University Press.
Galofré, J. C. (2012). Microchimerism in Graves’ Disease. Journal of Thyroid Research, 2012, 1–7. https://doi.org/10.1155/2012/724382
Gough, S. C. L. (2000). THE GENETICS OF GRAVES’ DISEASE. Endocrinology and Metabolism Clinics of North America, 29(2), 255–266. https://doi.org/10.1016/S0889-8529(05)70130-4
Higgins, E. S. , G. M. S. (n.d.). The Neuroscience of Clinical Psychiatry: The Pathophysiology of Behavior and Mental Illness, 3e.
Hussain, Y. S., Hookham, J. C., Allahabadia, A., & Balasubramanian, S. P. (2017). Epidemiology, management and outcomes of Graves’ disease—real life data. Endocrine, 56(3), 568–578. https://doi.org/10.1007/s12020-017-1306-5
Jackson, L. A., Anderson, E. J., Rouphael, N. G., Roberts, P. C., Makhene, M., Coler, R. N., McCullough, M. P., Chappell, J. D., Denison, M. R., Stevens, L. J., Pruijssers, A. J., McDermott, A., Flach, B., Doria-Rose, N. A., Corbett, K. S., Morabito, K. M., O’Dell, S., Schmidt, S. D., Swanson, P. A., … Beigel, J. H. (2020). An mRNA Vaccine against SARS-CoV-2 — Preliminary Report. New England Journal of Medicine, 383(20), 1920–1931. https://doi.org/10.1056/NEJMoa2022483
Kahaly, G. J., Grebe, S. K. G., Lupo, M. A., McDonald, N., & Sipos, J. A. (2011). Graves’ Disease: Diagnostic and Therapeutic Challenges (Multimedia Activity). The American Journal of Medicine, 124(6), S2–S3. https://doi.org/10.1016/j.amjmed.2011.03.001
Okada, Y., Momozawa, Y., Ashikawa, K., Kanai, M., Matsuda, K., Kamatani, Y., Takahashi, A., & Kubo, M. (2015). Construction of a population-specific HLA imputation reference panel and its application to Graves’ disease risk in Japanese. Nature Genetics, 47(7), 798–802. https://doi.org/10.1038/ng.3310
Paluchamy, T. (2021). Graves’ Disease. In Graves’ Disease. IntechOpen. https://doi.org/10.5772/intechopen.96418
Pardi, N., Hogan, M. J., Pelc, R. S., Muramatsu, H., Andersen, H., DeMaso, C. R., Dowd, K. A., Sutherland, L. L., Scearce, R. M., Parks, R., Wagner, W., Granados, A., Greenhouse, J., Walker, M., Willis, E., Yu, J.-S., McGee, C. E., Sempowski, G. D., Mui, B. L., … Weissman, D. (2017). Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. Nature, 543(7644), 248–251. https://doi.org/10.1038/nature21428
Patrizio, A., Ferrari, S. M., Antonelli, A., & Fallahi, P. (2021). A case of Graves’ disease and type 1 diabetes mellitus following SARS-CoV-2 vaccination. Journal of Autoimmunity, 125, 102738. https://doi.org/10.1016/j.jaut.2021.102738
Perricone, C., Colafrancesco, S., Mazor, R. D., Soriano, A., Agmon-Levin, N., & Shoenfeld, Y. (2013). Autoimmune/inflammatory syndrome induced by adjuvants (ASIA) 2013: Unveiling the pathogenic, clinical and diagnostic aspects. Journal of Autoimmunity, 47, 1–16. https://doi.org/10.1016/j.jaut.2013.10.004
Pierman, G., Delgrange, E., & Jonas, C. (2021). Recurrence of Graves’ Disease (a Th1-type Cytokine Disease) Following SARS-CoV-2 mRNA Vaccine Administration: A Simple Coincidence? European Journal of Case Reports in Internal Medicine. https://doi.org/10.12890/2021_002807
Pla Peris, B., Merchante Alfaro, A. Á., Maravall Royo, F. J., Abellán Galiana, P., Pérez Naranjo, S., & González Boillos, M. (2022). Thyrotoxicosis following SARS-COV-2 vaccination: a case series and discussion. Journal of Endocrinological Investigation, 45(5), 1071–1077. https://doi.org/10.1007/s40618-022-01739-0
Pujol, A., Gómez, L.-A., Gallegos, C., Nicolau, J., Sanchís, P., González-Freire, M., López-González, Á. A., Dotres, K., & Masmiquel, L. (2022). Thyroid as a target of adjuvant autoimmunity/inflammatory syndrome due to mRNA-based SARS-CoV2 vaccination: from Graves’ disease to silent thyroiditis. Journal of Endocrinological Investigation, 45(4), 875–882. https://doi.org/10.1007/s40618-021-01707-0
Rotondi, M., Coperchini, F., Ricci, G., Denegri, M., Croce, L., Ngnitejeu, S. T., Villani, L., Magri, F., Latrofa, F., & Chiovato, L. (2021). Detection of SARS-COV-2 receptor ACE-2 mRNA in thyroid cells: a clue for COVID-19-related subacute thyroiditis. Journal of Endocrinological Investigation, 44(5), 1085–1090. https://doi.org/10.1007/s40618-020-01436-w
S. Khan, M., S. Lone, S., Faiz, S., Farooq, I., & Majid, S. (2021). Graves’ Disease: Pathophysiology, Genetics and Management. In Graves’ Disease. IntechOpen. https://doi.org/10.5772/intechopen.98238
Singh, G., & Howland, T. (2022). Graves’ Disease Following COVID-19 Vaccination. Cureus. https://doi.org/10.7759/cureus.24418
VEJRAZKOVA, D., VCELAK, J., VACLAVIKOVA, E., VANKOVA, M., ZAJICKOVA, K., DUSKOVA, M., VRBIKOVA, J., & BENDLOVA, B. (2018). Genetic Predictors of the Development and Recurrence of Graves’ Disease. Physiological Research, S431–S439. https://doi.org/10.33549/physiolres.934018
Vera-Lastra, O., Navarro, A. O., Domiguez, M. P. C., Medina, G., Valadez, T. I. S., & Jara, L. J. (2021). Two cases of graves’ disease following SARS-CoV-2 vaccination: An autoimmune/inflammatory syndrome induced by adjuvants. Thyroid, 31(9), 1436–1439. https://doi.org/10.1089/thy.2021.0142
Vojdani, A., Vojdani, E., & Kharrazian, D. (2021). Reaction of Human Monoclonal Antibodies to SARS-CoV-2 Proteins With Tissue Antigens: Implications for Autoimmune Diseases. Frontiers in Immunology, 11. https://doi.org/10.3389/fimmu.2020.617089
Weintraub, M. A., Ameer, B., & Sinha Gregory, N. (2021). Graves Disease Following the SARS-CoV-2 Vaccine: Case Series. Journal of Investigative Medicine High Impact Case Reports, 9, 232470962110633. https://doi.org/10.1177/23247096211063356
Wémeau, J., Klein, M., Sadoul, J.-L., Briet, C., & Vélayoudom-Céphise, F.-L. (2018). Graves’ disease: Introduction, epidemiology, endogenous and environmental pathogenic factors. Annales d’Endocrinologie, 79(6), 599–607. https://doi.org/10.1016/j.ando.2018.09.002
Yanagawa, T., Mangklabruks, A., Chang, Y. B., Okamoto, Y., Fisfalen, M. E., Curran, P. G., & DeGroot, L. J. (1993). Human histocompatibility leukocyte antigen-DQA1*0501 allele associated with genetic susceptibility to Graves’ disease in a Caucasian population. The Journal of Clinical Endocrinology & Metabolism, 76(6), 1569–1574. https://doi.org/10.1210/jcem.76.6.8501164
YIN, X., LATIF, R., TOMER, Y., & DAVIES, T. F. (2007). Thyroid Epigenetics: X Chromosome Inactivation in Patients with Autoimmune Thyroid Disease. Annals of the New York Academy of Sciences, 1110(1), 193–200. https://doi.org/10.1196/annals.1423.021
Zettinig, G., & Krebs, M. (2022). Two further cases of Graves’ disease following SARS-Cov-2 vaccination. Journal of Endocrinological Investigation, 45(1), 227–228. https://doi.org/10.1007/s40618-021-01650-0
Published
2023-09-29
How to Cite
Febriana, G. G. (2023). Effects of SARS CoV-2 mRNA Vaccines on Graves’ Disease. Indonesian Journal of Life Sciences, 5(02), 105-118. https://doi.org/https://doi.org/10.54250/ijls.v5i02.180
Section
Life Science for Health and Wellbeing