Molecular Biomarkers and Pathophysiology Specific to Bipolar Disorder

Potential Diagnosis and Treatment Targets

  • Megan Angelita Salim Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia
  • Felicia Michelle Abriana Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia
  • Matthew Aurelius Tirta Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia
  • Sanny Sanny Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia
  • Lidya Kristiani Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia
Keywords: bipolar disorder, mania, depression, biphasic phases, molecular biomarker, mitochondrial dysfunction, pharmacotherapies

Abstract

Bipolar disorder (BD) is an episodic neuropsychiatric disorder with fluctuations between manic and depressive phases according to their types (BDI/BDII/cyclothymic), contributing to the decreased quality of life due to the impairment of cognitive abilities. Early detection is needed for proper treatment, however, the gold standard Structured Clinical Interview for DSM-IV results in misdiagnosis due to its inability to distinguish BD from other neuropsychiatric disorders. Therefore, diagnosis through molecular biomarkers can be performed to accurately distinguish BD from other neuropsychiatric disorders. This review aims to elaborate the evidence of molecular biomarkers in BD patients from recent studies, which may be fundamental in clinical practices for accurate diagnosis. Proteomic studies provide evidence for the differentially expressed proteins, namely brain-derived neurotrophic factors, which can differentiate BD from major depressive disorder and schizophrenia. Moreover, genetic alterations from genomic and transcriptomic studies found that CACNA1C, ANK3, FADS2, and other genes may predispose an individual to BD. Some of these genes are closely related to BD pathophysiology occurrence, including impaired oxidative phosphorylation, imbalance in calcium homeostasis, and neuroinflammation, all of which arise due to mitochondrial dysfunction. These pathophysiology can be alleviated by proper administration of mood stabilizers, antipsychotics, and anticonvulsants, but novel treatments targeting specific pathophysiology and biomarkers of BD are required for better treatment effectiveness.

Keywords: Bipolar disorder; mania/depression; molecular biomarker; mitochondrial dysfunction; pharmacotherapies

Downloads

Download data is not yet available.

Author Biographies

Megan Angelita Salim, Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia

Department of Biomedicine, Institut Bio Scientia Internasional Indonesia

Felicia Michelle Abriana, Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia

Department of Biomedicine, Institut Bio Scientia Internasional Indonesia

Matthew Aurelius Tirta, Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia

Department of Biomedicine, Institut Bio Scientia Internasional Indonesia

Sanny Sanny, Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia

Department of Biomedicine, Institut Bio Scientia Internasional Indonesia

Lidya Kristiani, Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia

Department of Biomedicine, Institut Bio Scientia Internasional Indonesia

References

Abelaira, H. M., Réus, G. Z., Ribeiro, K. F., Zappellini, G., Cipriano, A. L., Scaini, G., ... & Quevedo, J. (2012). Lamotrigine treatment reverses depressive-like behavior and alters BDNF levels in the brains of maternally deprived adult rats. Pharmacology Biochemistry and Behavior, 101(3), 348-353. https://doi.org/10.1016/j.pbb.2012.01.019
Abrial, E., Etievant, A., Bétry, C., Scarna, H., Lucas, G., Haddjeri, N., & Lambás-Señas, L. (2013). Protein kinase C regulates mood-related behaviors and adult hippocampal cell proliferation in rats. Progress in Neuro-psychopharmacology and Biological Psychiatry, 43, 40-48. https://doi.org/10.1016/j.pnpbp.2012.11.015
Agnew-Blais, J., & Danese, A. (2016). Childhood maltreatment and unfavourable clinical outcomes in bipolar disorder: A systematic review and meta-analysis. The Lancet Psychiatry, 3(4), 342-349. https://doi.org/10.1016/S2215-0366(15)00544-1
Akarsu, S., Bolu, A., Aydemir, E., Zincir, S. B., Kurt, Y. G., Zincir, S., Erdem, M., & Uzun, Ö. (2018). The relationship between the number of manic episodes and oxidative stress indicators in bipolar disorder. Psychiatry Investigation, 15(5), 514–519. https://doi.org/10.30773/pi.2016.12.31
Alonso-Lana, S., Moro, N., McKenna, P. J., Sarró, S., Romaguera, A., Monté, G. C., Maristany, T., Goikolea, J. M., Vieta, E., Salvador, R., & Pomarol-Clotet, E. (2019). Longitudinal brain functional changes between mania and euthymia in bipolar disorder. Bipolar disorders, 21(5), 449–457. https://doi.org/10.1111/bdi.12767
Altinay, M. I., Hulvershorn, L. A., Karne, H., Beall, E. B., & Anand, A. (2016). Differential resting-state functional connectivity of striatal subregions in bipolar depression and hypomania. Brain Connectivity, 6(3), 255-265. https://doi.org/10.1089/brain.2015.0396
American Psychiatric Association. (2013). Diagnostic and Statistical Manual of Mental Disorders (5th ed.). American Psychiatric Publishing.
Andreazza, A. C., & Young, L. T. (2014). The neurobiology of bipolar disorder: Identifying targets for specific agents and synergies for combination treatment. The International Journal of Neuropsychopharmacology, 17(7), 1039–1052. https://doi.org/10.1017/S1461145713000096
Bauer, M., & Gitlin, M. (2016). The Essential Guide to Lithium Treatment. Basel: Springer International Publishing.
Becking, K., Spijker, A. T., Hoencamp, E., Penninx, J. H., Schoevers, R. A., & Boschloo, L. (2015). Disturbances in Hypothalamic-Pituitary-Adrenal Axis and Immunological Activity Differentiating between Unipolar and Bipolar Depressive Episodes. PLOS ONE, 10(7), e0133898. https://doi.org/10.1371/journal.pone.0133898
Benedetti, F., Bollettini, I., Barberi, I., Radaelli, D., Poletti, S., Locatelli, C., Pirovano, A., Lorenzi, C., Falini, A., Colombo, C., & Smeraldi, E. (2013). Lithium and GSK3-β promoter gene variants influence white matter microstructure in bipolar disorder. Neuropsychopharmacology, 38(2), 313-327. https://doi.org/10.1038/npp.2012.172
Benedetti, F., Poletti, S., Hoogenboezem, T. A., Mazza, E., Ambrée, O., de Wit, H., Wijkhuijs, A. J., Locatelli, C., Bollettini, I., Colombo, C., Arolt, V., & Drexhage, H. A. (2016). Inflammatory cytokines influence measures of white matter integrity in Bipolar Disorder. Journal of affective disorders, 202, 1–9. https://doi.org/10.1016/j.jad.2016.05.047
Benedetti, F., Aggio, V., Pratesi, M. L., Greco, G., & Furlan, R. (2020). Neuroinflammation in Bipolar Depression. Frontiers in psychiatry, 11, 71. https://doi.org/10.3389/fpsyt.2020.00071
Berk, M., Daglas, R., Dandash, O., Yücel, M., Henry, L., Hallam, K., Macneil, C., Hasty, M., Pantelis, C., Murphy, B. P., Kader, L., Damodaran, S., Wong, M. T. H., Conus, P., Ratheesh, A., McGorry, P. D., & Cotton, S. M. (2017). Quetiapine v. lithium in the maintenance phase following a first episode of mania: randomised controlled trial. The British journal of psychiatry: the journal of mental science, 210(6), 413–421. https://doi.org/10.1192/bjp.bp.116.186833
Berridge, M. J., Downes, C. P., & Hanley, M. R. (1989). Neural and developmental actions of lithium: A unifying hypothesis. Cell, 59(3), 411-419. https://doi.org/10.1016/0092-8674(89)90026-3
Besag, F. M. C., Vasey, M. J., Sharma, A. N., & Lam, I. C. H. (2021). Efficacy and safety of lamotrigine in the treatment of bipolar disorder across the lifespan: A systematic review. Therapeutic Advances in Psychopharmacology, 11, 20451253211045870. https://doi.org/10.1177/20451253211045870
Bialer, M. (2012). Why are antiepileptic drugs used for nonepileptic conditions?. Epilepsia, 53(7), 26–33. https://doi.org/10.1111/j.1528-1167.2012.03712.x
Bigos, K. L., Mattay, V. S., Callicott, J. H., Straub, R. E., Vakkalanka, R., Kolachana, B., Hyde, T. M., Lipska, B. K., Kleinman, J. E., & Weinberger, D. R. (2010). Genetic variation in CACNA1C affects brain circuitries related to mental illness. Archives of General Psychiatry, 67(9), 939–945. https://doi.org/10.1001/archgenpsychiatry.2010.96
Blanco, C., Compton, W. M., Saha, T. D., Goldstein, B. I., Ruan, W. J., Huang, B., & Grant, B. F. (2017). Epidemiology of DSM-5 bipolar I disorder: Results from the national epidemiologic survey on alcohol and related conditions - III. Journal of Psychiatric Research, 84, 310–317. https://doi.org/10.1016/j.jpsychires.2016.10.003
Boscutti, A., Pigoni, A., Delvecchio, G., Lazzaretti, M., Mandolini, G. M., Girardi, P., ... & GECOBIP Group. (2022). The influence of 5-HTTLPR, BDNF Rs6265 and COMT Rs4680 polymorphisms on impulsivity in bipolar disorder: The role of gender. Genes, 13(3), 482. https://doi.org/10.3390/genes13030482
Bowden, C. L., & Singh, V. (2012). Lamotrigine (Lamictal IR) for the treatment of bipolar disorder. Expert Opinion on Pharmacotherapy, 13(17), 2565-2571. https://doi.org/10.1517/14656566.2012.741590
Brosch, K., Stein, F., Schmitt, S., Pfarr, J. K., Ringwald, K. G., Thomas-Odenthal, F., Meller, T., Steinsträter, O., Waltemate, L., Lemke, H., Meinert, S., Winter, A., Breuer, F., Thiel, K., Grotegerd, D., Hahn, T., Jansen, A., Dannlowski, U., Krug, A., Nenadić, I., … Kircher, T. (2022). Reduced hippocampal gray matter volume is a common feature of patients with major depression, bipolar disorder, and schizophrenia spectrum disorders. Molecular psychiatry, 27(10), 4234–4243. https://doi.org/10.1038/s41380-022-01687-4
Carvalho, A. F., Firth, J., & Vieta, E. (2020). Bipolar disorder. New England Journal of Medicine, 383(1), 58-66. https://doi.org/10.1056/NEJMra1906193
Chen, M., Tian, H., Huang, G., Fang, T., Lin, X., Shan, J., Cai, Z., Chen, G., Chen, S., Chen, C., Ping, J., Cheng, L., Chen, C., Zhu, J., Zhao, F., Jiang, D., Liu, C., Huang, G., Lin, C., & Zhuo, C. (2021). Calcium imaging reveals depressive- and manic-phase-specific brain neural activity patterns in a murine model of bipolar disorder: a pilot study. Translational Psychiatry, 11(1), 619. https://doi.org/10.1038/s41398-021-01750-8
Chen, R., Yang, Z., Liu, J., Cai, X., Huo, Y., Zhang, Z., Li, M., Chang, H., & Luo, X. J. (2022). Functional genomic analysis delineates regulatory mechanisms of GWAS-identified bipolar disorder risk variants. Genome medicine, 14(1), 53. https://doi.org/10.1186/s13073-022-01057-3
Chernoloz, O., Mansari, M. E., & Blier, P. (2012). Effects of Sustained Administration of Quetiapine Alone and in Combination with a Serotonin Reuptake Inhibitor on Norepinephrine and Serotonin Transmission. Neuropsychopharmacology, 37(7), 1717-1728. https://doi.org/10.1038/npp.2012.18
Chiou, Y. J., & Huang, T. L. (2019). Brain-derived neurotrophic factor (BDNF) and bipolar disorder. Psychiatry Research, 274, 395-399. https://doi.org/10.1016/j.psychres.2019.02.051
Chiu, W., Geng, J., & Liao, Q. (2022). Effects of Antipsychotic Drugs and Antimanic Drugs on Bipolar Disorder. Highlights in Science, Engineering and Technology, 8, 143-151. https://doi.org/10.54097/hset.v8i.1121
Coppens, V., De Wachter, O., Goossens, J., Hendrix, J., Maudsley, S., Azmi, A., … Morrens, M. (2020). Profiling of the peripheral blood mononuclear cell proteome in schizophrenia and mood disorders for the discovery of discriminatory biomarkers: A proof-of-concept study. Neuropsychobiology, 1–11. https://doi.org/10.1159/000507631
Culpepper, L. (2014). The diagnosis and treatment of bipolar disorder: Decision-making in primary care. The Primary Care Companion for CNS Disorders, 16(3), PCC.13r01609. https://doi.org/10.4088/PCC.13r01609
Davico, C., Canavese, C., Vittorini, R., Gandione, M., & Vitiello, B. (2018). Anticonvulsants for psychiatric disorders in children and adolescents: A systematic review of their efficacy. Frontiers in Psychiatry, 9. https://doi.org/10.3389/fpsyt.2018.00270
De Jesus, J. R., Galazzi, R. M., de Lima, T. B., Banzato, C. E. M., de Almeida Lima e Silva, L. F., de Rosalmeida Dantas, C., … Arruda, M. A. Z. (2017). Simplifying the human serum proteome for discriminating patients with bipolar disorder of other psychiatry conditions. Clinical Biochemistry, 50(18), 1118–1125. doi:10.1016/j.clinbiochem.2017.06
Etain, B., Aas, M., Andreassen, O. A., Lorentzen, S., Dieset, I., Gard, S., Kahn, J. P., Bellivier, F., Leboyer, M., Melle, I., & Henry, C. (2013). Childhood trauma is associated with severe clinical characteristics of bipolar disorders. The Journal of Clinical Psychiatry, 74(10), 991–998. https://doi.org/10.4088/JCP.13m08353
Felger, J. C., Li, Z., Haroon, E., Woolwine, B. J., Jung, M. Y., Hu, X., & Miller, A. H. (2016). Inflammation is associated with decreased functional connectivity within corticostriatal reward circuitry in depression. Molecular Psychiatry, 21(10), 1358-1365.
Ferrari, A. J., Stockings, E., Khoo, J. P., Erskine, H. E., Degenhardt, L., Vos, T., & Whiteford, H. A. (2016). The prevalence and burden of bipolar disorder: Findings from the Global Burden of Disease Study 2013. Bipolar Disorders, 18(5), 440-450. https://doi.org/10.1111/bdi.12423
Fornaro, M., Stubbs, B., Berardis, D. D., Perna, G., Valchera, A., Veronese, N., Solmi, M., & Ganança, L. (2016). Atypical Antipsychotics in the Treatment of Acute Bipolar Depression with Mixed Features: A Systematic Review and Exploratory Meta-Analysis of Placebo-Controlled Clinical Trials. International Journal of Molecular Sciences, 17(2). https://doi.org/10.3390/ijms17020241
Frizzo, M. E. (2019). The effect of glutamatergic modulators on extracellular glutamate: How does this information contribute to the discovery of novel antidepressants?. Current Therapeutic Research, 91, 25-32. https://doi.org/10.1016/j.curtheres.2019.100566
Gambeta, E., Chichorro, J. G., & Zamponi, G. W. (2020). Trigeminal neuralgia: An overview from pathophysiology to pharmacological treatments. Molecular pain, 16, 1744806920901890. https://doi.org/10.1177/1744806920901890
Gervasoni, N., Weber Rouget, B., Miguez, M., Dubuis, V., Bizzini, V., Gex-Fabry, M., … Aubry, J.-M. (2009). Performance of the Mood Disorder Questionnaire (MDQ) according to bipolar subtype and symptom severity. European Psychiatry, 24(5), 341–344. doi:10.1016/j.eurpsy.2008.12.008
Giménez-Palomo, A., Dodd, S., Anmella, G., Carvalho, A. F., Scaini, G., Quevedo, J., Pacchiarotti, I., Vieta, E., & Berk, M. (2021). The role of mitochondria in mood disorders: From physiology to pathophysiology and to treatment. Frontiers in Psychiatry, 12, 977. https://doi.org/10.3389/fpsyt.2021.546801
Institute for Health Metrics and Evaluation. (2019). Number of people with bipolar disorder, world, 1990 to 2019. United States: Institute for Health Metrics and Evaluation
Gonzalez, S. (2021). The role of mitonuclear incompatibility in bipolar disorder susceptibility and resilience against environmental stressors. Frontiers in Genetics, 12, 636294. https://doi.org/10.3389/fgene.2021.636294
Gould, T. D., Chen, G., & Manji, H. K. (2004). In vivo evidence in the brain for lithium inhibition of glycogen synthase kinase-3. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 29(1), 32–38. https://doi.org/10.1038/sj.npp.1300283
Grande, I., Berk, M., Birmaher, B., & Vieta, E. (2016). Bipolar disorder. The Lancet, 387(10027), 1561-1572. https://doi.org/10.1016/S0140-6736(15)00241-X
Grunze, A., Amann, B. L., & Grunze, H. (2021). Efficacy of Carbamazepine and Its Derivatives in the Treatment of Bipolar Disorder. Medicina (Kaunas, Lithuania), 57(5), 433. https://doi.org/10.3390/medicina57050433
Grunze, H., Csehi, R., Born, C., & Barabássy, Á. (2021). Reducing Addiction in Bipolar Disorder via Hacking the Dopaminergic System. Frontiers in Psychiatry, 12. https://doi.org/10.3389/fpsyt.2021.803208
Guzman-Parra, J., Streit, F., Forstner, A. J., Strohmaier, J., González, M. J., Gil Flores, S., Cabaleiro Fabeiro, F. J., Del Río Noriega, F., Perez Perez, F., Haro González, J., Orozco Diaz, G., de Diego-Otero, Y., Moreno-Kustner, B., Auburger, G., Degenhardt, F., Heilmann-Heimbach, S., Herms, S., Hoffmann, P., Frank, J., Foo, J. C., … Rietschel, M. (2021). Clinical and genetic differences between bipolar disorder type 1 and 2 in multiplex families. Translational psychiatry, 11(1), 31. https://doi.org/10.1038/s41398-020-01146-0
Han, D., Shi, S., & Luo, H. (2019). The therapeutic effect of quetiapine on cognitive impairment associated with 5-HT1A presynaptic receptor involved schizophrenia. Journal of Integrative Neuroscience, 18(3), 245–251. https://doi.org/10.31083/j.jin.2019.03.186
Harrison, P. J., Hall, N., Mould, A., Al-Juffali, N., & Tunbridge, E. M. (2021). Cellular calcium in bipolar disorder: Systematic review and meta-analysis. Molecular Psychiatry, 26(8), 4106–4116. https://doi.org/10.1038/s41380-019-0622-y
Heinrich, A., Lourdusamy, A., Tzschoppe, J., Vollstädt‐Klein, S., Bühler, M., Steiner, S., Bach, C., Poustka, L., Banaschewski, T., Barker, G., Büchel, C., Conrod, P., Garavan, H., Gallinat, J., Heinz, A., Ittermann, B., Loth, E., Mann, K., Martinot, J. L., Paus, T., ... & IMAGEN consortium. (2013). The risk variant in ODZ 4 for bipolar disorder impacts on amygdala activation during reward processing. Bipolar Disorders, 15(4), 440-445. https://doi.org/10.1111/bdi.12068
Holm, M., Tanskanen, A., Lähteenvuo, M., Tiihonen, J., & Taipale, H. (2022). Comparative effectiveness of mood stabilizers and antipsychotics in the prevention of hospitalization after lithium discontinuation in bipolar disorder. European Neuropsychopharmacology, 61, 36-42. https://doi.org/10.1016/j.euroneuro.2022.05.012
Huang, Y., Liu, Y., Wu, Y., Tang, Y., Zhang, M., Liu, S., Xiao, L., Tao, S., Xie, M., Dai, M., Li, M., Gui, H., & Wang, Q. (2022). Patterns of convergence and divergence between bipolar disorder type I and type II: Evidence from integrative genomic analyses. Frontiers in Cell and Developmental Biology, 10. https://doi.org/10.3389/fcell.2022.956265.
Ikeda, M., Takahashi, A., Kamatani, Y., Okahisa, Y., Kunugi, H., Mori, N., Sasaki, T., Ohmori, T., Okamoto, Y., Kawasaki, H., Shimodera, S., Kato, T., Yoneda, H., Yoshimura, R., Iyo, M., Matsuda, K., Akiyama, M., Ashikawa, K., Kashiwase, K., Tokunaga, K., ... & Iwata, N. (2018). A genome-wide association study identifies two novel susceptibility loci and trans population polygenicity associated with bipolar disorder. Molecular Psychiatry, 23(3), 639-647. https://doi.org/10.1038/mp.2016.259
Jadhav, S., Russo, S., Cowart, L. A., & Greenberg, M. L. (2017). Inositol depletion induced by acute treatment of the bipolar disorder drug valproate increases levels of phytosphingosine. The Journal of Biological Chemistry, 292(12), 4953–4959. https://doi.org/10.1074/jbc.M117.775460
Jain, A., & Mitra, P. (2022). Bipolar affective disorder. StatPearls [Internet]. https://www.ncbi.nlm.nih.gov/books/NBK558998/
Jauhar, S., & Young, A. H. (2019). Controversies in bipolar disorder; role of second-generation antipsychotic for maintenance therapy. International Journal of Bipolar Disorders, 7(1), 1-9. https://doi.org/10.1186/s40345-019-0145-0
Jensen, N. H., Rodriguiz, R. M., Caron, M. G., Wetsel, W. C., Rothman, R. B., & Roth, B. L. (2007). N-Desalkylquetiapine, a potent norepinephrine reuptake inhibitor and partial 5-HT1A agonist, as a putative mediator of quetiapine’s antidepressant activity. Neuropsychopharmacology, 33(10), 2303–2312. https://doi.org/10.1038/sj.npp.1301646
Jiang, X., Detera-Wadleigh, S. D., Akula, N., Mallon, B. S., Hou, L., Xiao, T., Felsenfeld, G., Gu, X., & McMahon, F. J. (2019). Sodium valproate rescues expression of TRANK1 in iPSC-derived neural cells that carry a genetic variant associated with serious mental illness. Molecular Psychiatry, 24(4), 613–624. https://doi.org/10.1038/s41380-018-0207-1
Jung, Y. S., Kim, Y. E., Kim, A., & Yoon, S. J. (2020). Trends in the prevalence and treatment of bipolar affective disorder in South Korea. Asian Journal of Psychiatry, 53, 102194.
Kamaeva, D. A., Smirnova, L. P., Vasilieva, S. N., Kazantseva, D. V., Vasilieva, A. R., & Ivanova, S. A. (2022). Catalytic antibodies in bipolar disorder: Serum IgGs hydrolyze myelin basic protein. International Journal of Molecular Sciences, 23(13), 7397.
Kamintsky, L., A. Cairns, K., Veksler, R., Bowen, C., D. Beyea, S., Friedman, A., & Calkin, C. (2020). Blood-brain barrier imaging as a potential biomarker for bipolar disorder progression. NeuroImage: Clinical, 26, 102049. https://doi.org/10.1016/j.nicl.2019.102049
Kato, T. (2017). Neurobiological basis of bipolar disorder: Mitochondrial dysfunction hypothesis and beyond. Schizophrenia Research, 187, 62-66. https://doi.org/10.1016/j.schres.2016.10.037
Kato, T. (2019). Current understanding of bipolar disorder: Toward integration of biological basis and treatment strategies. Psychiatry and Clinical Neurosciences, 73(9), 526–540. https://doi.org/10.1111/pcn.12852
Kawamoto, E. M., Vivar, C., & Camandola, S. (2012). Physiology and pathology of calcium signaling in the brain. Frontiers in Pharmacology, 61.
Khalid, M., Driessen, T. M., Lee, J. S., Tejwani, L., Rasool, A., Saqlain, M., Shiaq, P. A., Hanif, M., Nawaz, A., DeWan, A. T., Raja, G. K., & Lim, J. (2018). Association of CACNA1C with bipolar disorder among the Pakistani population. Gene, 664, 119–126. https://doi.org/10.1016/j.gene.2018.04.061
Kim, H. K., Mendonça, K. M., Howson, P. A., Brotchie, J. M., & Andreazza, A. C. (2015). The link between mitochondrial complex I and brain-derived neurotrophic factor in SH-SY5Y cells–The potential of JNX1001 as a therapeutic agent. European Journal of Pharmacology, 764, 379-384. https://doi.org/10.1016/j.ejphar.2015.07.013
Kim, H. K., Andreazza, A. C., Elmi, N., Chen, W., & Young, L. T. (2016). Nod-like receptor pyrin containing 3 (NLRP3) in the post-mortem frontal cortex from patients with bipolar disorder: A potential mediator between mitochondria and immune-activation. Journal of Psychiatric Research, 72, 43-50. https://doi.org/10.1016/j.jpsychires.2015.10.015
Kim, Y., Santos, R., Gage, F. H., & Marchetto, M. C. (2017). Molecular mechanisms of bipolar disorder: Progress made and future challenges. Frontiers in Cellular Neuroscience, 11, 30. https://doi.org/10.3389/fncel.2017.00030
Kohshour, M. O., Papiol, S., Ching, C. R. K., & Schulze, T. G. (2022). Genomic and neuroimaging approaches to bipolar disorder. BJPsych Open, 8(2), e36. https://doi.org/10.1192/bjo.2021.1082
Konuk, N., Karaahmet, E., Angın, Ü., Kılıç, A., & Kökrek, Z. (2022). Evaluation of mood disorder questionnaire positivity and associated factors in a population-based screening study. Psicologia: Reflexão e Crítica, 35. https://doi.org/10.1186/s41155-022-00229-9
Kubo, H., Nakataki, M., Sumitani, S., Iga, J. I., Numata, S., Kameoka, N., Watanabe, S. Y., Umehara, H., Kinoshita, M., Inoshita, M., Tamaru, M., Ohta, M., Nakayama-Yamauchi, C., Funakoshi, Y., Harada, M., & Ohmori, T. (2017). 1H-magnetic resonance spectroscopy study of glutamate-related abnormality in bipolar disorder. Journal of Affective Disorders, 208, 139-144. https://doi.org/10.1016/j.jad.2016.08.046
Kuswanto, C. N., Sum, M. Y., Thng, C. R., Zhang, Y. B., Yang, G. L., Nowinski, W. L., Sitoh, Y. Y., Low, C. M., & Sim, K. (2013). GRIN2B gene and associated brain cortical white matter changes in bipolar disorder: a preliminary combined platform investigation. BioMed Research International, 2013, 635131. https://doi.org/10.1155/2013/635131
Lai, C., Lu, C., Lin, H., Sung, Y., Wu, Y., Hong, J., & Peng, G. (2019). Valproate is protective against 6-OHDA-induced dopaminergic neurodegeneration in rodent midbrain: A potential role of BDNF up-regulation. Journal of the Formosan Medical Association, 118(1), 420-428. https://doi.org/10.1016/j.jfma.2018.06.017
Larsson, S., Aas, M., Klungsøyr, O., Agartz, I., Mork, E., Steen, N. E., Barrett, E. A., Lagerberg, T. V., Røssberg, J. I., Melle, I., Andreassen, O. A., & Lorentzen, S. (2013). Patterns of childhood adverse events are associated with clinical characteristics of bipolar disorder. BMC psychiatry, 13, 97. https://doi.org/10.1186/1471-244X-13-97
Li, H. J., Zhang, C., Hui, L., Zhou, D. S., Li, Y., Zhang, C. Y., Wang, C., Wang, L., Li, W., Yang, Y., Qu, N., Tang, J., He, Y., Zhou, J., Yang, Z., Li, X., Cai, J., Yang, L., Chen, J., Fan, W., ... & GeseDNA Research Team. (2021a). Novel risk loci associated with genetic risk for bipolar disorder among Han Chinese individuals: A genome-wide association study and meta-analysis. JAMA Psychiatry, 78(3), 320-330. https://doi.org/10.1001/jamapsychiatry.2020.3738
Li, W., Cai, X., Li, H. J., Song, M., Zhang, C. Y., Yang, Y., Zhang, L., Zhao, L., Liu, W., Wang, L., Shao, M., Zhang, Y., Zhang, C., Cai, J., Zhou, D. S., Li, X., Hui, L., Jia, Q. F., Qu, N., Zhong, B. L., … Chang, H. (2021b). Independent replications and integrative analyses confirm TRANK1 as a susceptibility gene for bipolar disorder. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 46(6), 1103–1112. https://doi.org/10.1038/s41386-020-00788-4
Lin, C. L. G., Kong, Q., Cuny, G. D., & Glicksman, M. A. (2012). Glutamate transporter EAAT2: A new target for the treatment of neurodegenerative diseases. Future Medicinal Chemistry, 4(13), 1689-1700. https://doi.org/10.4155/fmc.12.122
Linke, J., Witt, S. H., King, A. V., Nieratschker, V., Poupon, C., Gass, A., Hennerici, M. G., Rietschel, M., & Wessa, M. (2012). Genome-wide supported risk variant for bipolar disorder alters anatomical connectivity in the human brain. Neuroimage, 59(4), 3288-3296. https://doi.org/10.1016/j.neuroimage.2011.10.083
Liu, Y., & McNamara, R. K. (2011). Elevated Delta-6 desaturase (FADS2) gene expression in the prefrontal cortex of patients with bipolar disorder. Journal of Psychiatric Research, 45(2), 269–272. https://doi.org/10.1016/j.jpsychires.2010.06.010
Lotrich, F. E., Butters, M. A., Aizenstein, H., Marron, M. M., Reynolds, C. F., & Gildengers, A. G. (2014). The relationship between interleukin-1 receptor antagonist and cognitive function in older adults with bipolar disorder. International Journal of Geriatric Psychiatry, 29(6), 635–644. https://doi.org/10.1002/gps.4048
Lu, Y. R., Rao, Y. B., Mou, Y. J., Chen, Y., Lou, H. F., Zhang, Y., Zhang, D. X., Xie, H. Y., Hu, L. W., & Fang, P. (2019). High concentrations of serum interleukin-6 and interleukin-8 in patients with bipolar disorder. Medicine, 98(7). https://doi.org/10.1097/MD.0000000000014419
McElroy, S. L., Veldic, M., Singh, B., Kung, S., Nunez, N. A., Coombes, B. J., Prieto, M., Betcher, H. K., Moore, K. M., Winham, S. J., Biernacka, J. M., & Frye, M. A. (2020). Potential pharmacogenomic targets in bipolar disorder: Considerations for current testing and the development of decision support tools to individualize treatment selection. International Journal of Bipolar Disorders, 8(1), 1-17. https://doi.org/10.1186/s40345-020-00184-3
McIntyre, R. S., Berk, M., Brietzke, E., Goldstein, B. I., López-Jaramillo, C., Kessing, L. V., Malhi, G. S., Nierenberg, A. A., Rosenblat, J. D., Majeed, A., Vieta, E., Vinberg, M., Young, A. H., & Mansur, R. B. (2020). Bipolar disorders. The Lancet, 396(10265), 1841-1856. https://doi.org/10.1016/S0140-6736(20)31544-0
Merikangas, K. R., Jin, R., He, J. P., Kessler, R. C., Lee, S., Sampson, N. A., Viana, M. C., Andrade, L. H., Hu, C., Karam, E. G., Ladea, M., Medina-Mora, M. E., Ono, Y., Posada-Villa, J., Sagar, R., Wells, J. E., & Zarkov, Z. (2011). Prevalence and correlates of bipolar spectrum disorder in the world mental health survey initiative. Archives of General Psychiatry, 68(3), 241-251. https://doi.org/10.1001/archgenpsychiatry.2011.12
Mohammadi, Z., Pourshahbaz, A., Dolatshahi, B., & Poshtmashhadi, M. (2017). Clinical manifestations of mania in patients with bipolar I disorder based on the primary symptoms in DSM-5. Practice in Clinical Psychology, 5(4), 289-296. https://doi.org/10.29252/nirp.jpcp.5.4.289
Mühleisen, T. W., Leber, M., Schulze, T. G., Strohmaier, J., Degenhardt, F., Treutlein, J., Mattheisen, M., Forstner, A. J., Schumacher, J., Breuer, R., Meier, S., Herms, S., Hoffmann, P., Lacour, A., Witt, S. H., Reif, A., Müller-Myhsok, B., Lucae, S., Maier, W., Schwarz, M., … & Cichon, S. (2014). Genome-wide association study reveals two new risk loci for bipolar disorder. Nature Communications, 5(1), 1-8. https://doi.org/10.1038/ncomms4339
Mullins, N., Forstner, A. J., O’Connell, K. S., Coombes, B., Coleman, J. R., Qiao, Z., Als, T. D., Bigdeli, T. B., Børte, S., Bryois, J., Charney, A. W., Drange, O. K., Gandal, M. J., Hagenaars, S. P., Ikeda, M., Kamitaki, N., Kim, M., Krebs, K., Panagiotaropoulou, G., Schilder, B. M., … Andreassen, O. A. (2021). Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. Nature Genetics, 53(6), 817-829. https://doi.org/10.1038/s41588-021-00857-4
Muneer, A. (2017). Wnt and GSK3 signaling pathways in bipolar disorder: Clinical and therapeutic implications. Clinical Psychopharmacology and Neuroscience: The Official Scientific Journal of the Korean College of Neuropsychopharmacology, 15(2), 100–114. https://doi.org/10.9758/cpn.2017.15.2.100
Muneer, A. (2020). The discovery of clinically applicable biomarkers for bipolar disorder: A review of candidate and proteomic approaches. Chonnam Medical Journal, 56(3), 166. https://doi.org/10.4068/cmj.2020.56.3.166
Nakatani, Y., Masuko, H., & Amano, T. (2013). The effect of lamotrigine on Nav1. 4 voltage-gated sodium channels. Journal of Pharmacological Sciences, 123(2), 203-206. https://doi.org/10.1254/jphs.13116SC
Nasru, W. N. W., Razak, A., Yaacob, N. M., & Azman, W. N. W. (2021). Alteration of plasma alanine, glutamate, and glycine level: A potentiate manic episode of bipolar disorder. The Malaysian Journal of Pathology, 43(1), 25-32.
Nieratschker, V., Brückmann, C., & Plewnia, C. (2015). CACNA1C risk variant affects facial emotion recognition in healthy individuals. Scientific Reports, 5, 17349. https://doi.org/10.1038/srep17349
Ortega-Ruiz, M., Soria-Chacartegui, P., Villapalos-García, G., Abad-Santos, F., & Zubiaur, P. (2022). The pharmacogenetics of treatment with quetiapine. Future Pharmacology, 2(3), 276–286. https://doi.org/10.3390/futurepharmacol2030018
Panaccione, I., Spalletta, G., & Sani, G. (2015). Neuroinflammation and excitatory symptoms in bipolar disorder. Neuroimmunology and Neuroinflammation, 2, 215-227. https://doi.org/10.4103/2347-8659.167304
Pappas, A. L., Bey, A. L., Wang, X., Rossi, M., Kim, Y. H., Yan, H., Porkka, F., Duffney, L. J., Phillips, S. M., Cao, X., Ding, J. D., Rodriguiz, R. M., Yin, H. H., Weinberg, R. J., Ji, R. R., Wetsel, W. C., & Jiang, Y. H. (2017). Deficiency of Shank2 causes mania-like behavior that responds to mood stabilizers. JCI Insight, 2(20), e92052. https://doi.org/10.1172/jci.insight.92052
Patel, J. P., & Frey, B. N. (2015). Disruption in the blood-brain barrier: The missing link between brain and body inflammation in bipolar disorder?. Neural Plasticity, 2015, 708306. https://doi.org/10.1155/2015/708306
Paterniti, S., & Bisserbe, J. C. (2018). Factors associated with false positives in MDQ screening for bipolar disorder: insight into the construct validity of the scale. Journal of Affective Disorders, 238, 79-86. https://doi.org/10.1016/j.jad.2018.05.058
Peselow, E. D., Clevenger, S., & Ishak, W. W. (2016). Prophylactic efficacy of lithium, valproic acid, and carbamazepine in the maintenance phase of bipolar disorder: A naturalistic study. International Clinical Psychopharmacology, 31(4), 218–223. https://doi.org/10.1097/YIC.0000000000000097
Picard, M., & McEwen, B. S. (2014). Mitochondria impact brain function and cognition. Proceedings of the National Academy of Sciences of the United States of America, 111(1), 7–8. https://doi.org/10.1073/pnas.1321881111
Post, R. M., Altshuler, L. L., Kupka, R., McElroy, S. L., Frye, M. A., Rowe, M., Leverich, G. S., Grunze, H., Suppes, T., Keck, P. E., Jr, & Nolen, W. A. (2015). Verbal abuse, like physical and sexual abuse, in childhood is associated with an earlier onset and more difficult course of bipolar disorder. Bipolar Disorders, 17(3), 323–330. https://doi.org/10.1111/bdi.12268
Prabhavalkar, K. S., Poovanpallil, N. B., & Bhatt, L. K. (2015). Management of bipolar depression with lamotrigine: An antiepileptic mood stabilizer. Frontiers in Pharmacology, 6. https://doi.org/10.3389/fphar.2015.00242
Qi, X., Wen, Y., Li, P., Liang, C., Cheng, B., Ma, M., Cheng, S., Zhang, L., Liu, L., Kafle, O. P., & Zhang, F. (2020). An integrative analysis of genome-wide association study and regulatory SNP annotation datasets identified candidate genes for bipolar disorder. International journal of bipolar disorders, 8(1), 6. https://doi.org/10.1186/s40345-019-0170-z
Rollins, B. L., Morgan, L., Hjelm, B. E., Sequeira, A., Schatzberg, A. F., Barchas, J. D., Lee, F. S., Myers, R. M., Watson, S. J., Akil, H., Potkin, S. G., Bunney, W. E., & Vawter, M. P. (2018). Mitochondrial complex I deficiency in schizophrenia and bipolar disorder and medication influence. Molecular Neuropsychiatry, 3(3), 157–169. https://doi.org/10.1159/000484348
Sanford, M., & Keating, G. M. (2012). Quetiapine: a review of its use in the management of bipolar depression. CNS drugs, 26(5), 435–460. https://doi.org/10.2165/11203840-000000000-00000
Sasayama, D., Hori, H., Yamamoto, N., Nakamura, S., Teraishi, T., Tatsumi, M., Hattori, K., Ota, M., Higuchi, T., & Kunugi, H. (2014). ITIH3 polymorphism may confer susceptibility to psychiatric disorders by altering the expression levels of GLT8D1. Journal of psychiatric research, 50, 79–83. https://doi.org/10.1016/j.jpsychires.2013.12.002
Serafini, G., Nasrallah, H. A., & Amore, M. (2022). The use of modern dopamine partial agonists in bipolar depression: is the evidence sound?. Current medical research and opinion, 38(5), 773–775. https://doi.org/10.1080/03007995.2022.2059973
Shen, H., Zhang, L., Xu, C., Zhu, J., Chen, M., & Fang, Y. (2018). Analysis of misdiagnosis of bipolar disorder in an outpatient setting. Shanghai Archives of Psychiatry, 30(2), 93–101. https://doi.org/10.11919/j.issn.1002-0829.217080
Shin, W., Kweon, H., Kang, R., Kim, D., Kim, K., Kang, M., Kim, S. Y., Hwang, S. N., Kim, J. Y., Yang, E., Kim, H., & Kim, E. (2019). SCN2A haploinsufficiency in mice suppresses hippocampal neuronal excitability, excitatory synaptic drive, and long-term potentiation, and spatial learning and memory. Frontiers in Molecular Neuroscience, 12, 145. https://doi.org/10.3389/fnmol.2019.00145
Sigitova, E., Fišar, Z., Hroudová, J., Cikánková, T., & Raboch, J. (2017). Biological hypotheses and biomarkers of bipolar disorder. Psychiatry and Clinical Neurosciences, 71(2), 77-103. https://doi.org/10.1111/pcn.12476
Simonetti, A., Koukopoulos, A. E., Kotzalidis, G. D., Janiri, D., De Chiara, L., Janiri, L., & Sani, G. (2020). Stabilization beyond mood: Stabilizing patients with bipolar disorder in the various phases of life. Frontiers in Psychiatry, 11, 247. https://doi.org/10.3389/fpsyt.2020.00247
Skibińska, M., Rajewska-Rager, A., Dmitrzak-Węglarz, M., Kapelski, P., Lepczynska, N., Kaczmarek, M., & Pawlak, J. (2022). Interleukin-8 and tumor necrosis factor-alpha in youth with mood disorders-A longitudinal study. Frontiers in Psychiatry, 1814. https://doi.org/10.3389/fpsyt.2022.964538
Smaragdi, A., Chavez, S., Lobaugh, N. J., Meyer, J. H., & Kolla, N. J. (2019). Differential levels of prefrontal cortex glutamate + glutamine in adults with antisocial personality disorder and bipolar disorder: A proton magnetic resonance spectroscopy study. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 93, 250-255. https://doi.org/10.1016/j.pnpbp.2019.04.002
Smedler, E., Louhivuori, L., Romanov, R. A., Masini, D., Dehnisch Ellström, I., Wang, C., Caramia, M., West, Z., Zhang, S., Rebellato, P., Malmersjö, S., Brusini, I., Kanatani, S., Fisone, G., Harkany, T., & Uhlén, P. (2022). Disrupted Cacna1c gene expression perturbs spontaneous Ca2+ activity causing abnormal brain development and increased anxiety. Proceedings of the National Academy of Sciences of the United States of America, 119(7), e2108768119. https://doi.org/10.1073/pnas.2108768119
Smirnova, L., Seregin, A., Boksha, I., Dmitrieva, E., Simutkin, G., Kornetova, E., Savushkina, O., Letova, A., Bokhan, N., Ivanova, S., & Zgoda, V. (2019). The difference in serum proteomes in schizophrenia and bipolar disorder. BMC genomics, 20(Suppl 7), 535. https://doi.org/10.1186/s12864-019-5848-1
Snitow, M. E., Bhansali, R. S., & Klein, P. S. (2021). Lithium and therapeutic targeting of GSK-3. Cells, 10(2). https://doi.org/10.3390/cells10020255
Soeiro-de-Souza, M. G., Otaduy, M. C. G., Machado-Vieira, R., Moreno, R. A., Nery, F. G., Leite, C., & Lafer, B. (2018). Anterior cingulate cortex glutamatergic metabolites and mood stabilizers in euthymic bipolar I disorder patients: A proton magnetic resonance spectroscopy study. Cognitive Neuroscience and Neuroimaging, 3(12), 985–991. https://doi.org/10.1016/j.bpsc.2018.02.007
Song, J., Bergen, S. E., Kuja‐Halkola, R., Larsson, H., Landén, M., & Lichtenstein, P. (2015). Bipolar disorder and its relation to major psychiatric disorders: A family‐based study in the Swedish population. Bipolar Disorders, 17(2), 184-193. https://doi.org/10.1111/bdi.12242
Song, J., Sjölander, A., Joas, E., Bergen, S. E., Runeson, B., Larsson, H., Landén, M., & Lichtenstein, P. (2017). Suicidal behavior during lithium and valproate treatment: A within-individual 8-year prospective study of 50,000 patients with bipolar disorder. The American Journal of Psychiatry, 174(8), 795–802. https://doi.org/10.1176/appi.ajp.2017.16050542
Spratt, P., Ben-Shalom, R., Keeshen, C. M., Burke, K. J., Jr, Clarkson, R. L., Sanders, S. J., & Bender, K. J. (2019). The autism-associated gene SCN2A contributes to dendritic excitability and synaptic function in the prefrontal cortex. Neuron, 103(4), 673–685.e5. https://doi.org/10.1016/j.neuron.2019.05.037
Srinivas, S., Parvataneni, T., Makani, R., & Patel, R. S. (2020). Efficacy and Safety of Quetiapine for Pediatric Bipolar Depression: A Systematic Review of Randomized Clinical Trials. Cureus, 12(6). https://doi.org/10.7759/cureus.8407
Stahl, E. A., Breen, G., Forstner, A. J., McQuillin, A., Ripke, S., Trubetskoy, V., Mattheisen, M., Wang, Y., Coleman, J. R. I., Gaspar, H. A., de Leeuw, C. A., Steinberg, S., Pavlides, J. M. W., Trzaskowski, M., Byrne, E. M., Pers, T. H., Holmans, P. A., Richards, A. L., Abbott, L., Agerbo, E., … Bipolar Disorder Working Group of the Psychiatric Genomics Consortium (2019). Genome-wide association study identifies 30 loci associated with bipolar disorder. Nature genetics, 51(5), 793–803. https://doi.org/10.1038/s41588-019-0397-8
Strenn, N., Pålsson, E., Liberg, B., Landén, M., & Ekman, A. (2021). Influence of genetic variations in IL1B on brain region volumes in bipolar patients and controls. Psychiatry Research, 296, 113606. https://doi.org/10.1016/j.psychres.2020.113606
Terao, T., Ishida, A., Kimura, T., Yarita, M., & Hara, T. (2017). Preventive effects of lamotrigine in bipolar II versus bipolar I disorder. The Journal of Clinical Psychiatry, 78(8), 15556. https://doi.org/10.4088/JCP.16m11404
Toker, L., & Agam, G. (2014). Lithium, inositol and mitochondria. ACS Chemical Neuroscience, 5(6), 411–412. https://doi.org/10.1021/cn5001149
Tondelli, M., Vaudano, A. E., Sisodiya, S. M., & Meletti, S. (2020). Valproate use is associated with posterior cortical thinning and ventricular enlargement in epilepsy patients. Frontiers in Neurology, 11. https://doi.org/10.3389/fneur.2020.00622
Torrell, H., Montaña, E., Abasolo, N., Roig, B., Gaviria, A. M., Vilella, E., & Martorell, L. (2013). Mitochondrial DNA (mtDNA) in brain samples from patients with major psychiatric disorders: Gene expression profiles, mtDNA content and presence of the mtDNA common deletion. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 162B(2), 213–223. https://doi.org/10.1002/ajmg.b.32134
Tournier, M., Neumann, A., Pambrun, E., Weill, A., Chaffiol, J., Alla, F., Bégaud, B., Maura, G., & Verdoux, H. (2019). Conventional mood stabilizers and/or second-generation antipsychotic drugs in bipolar disorders: A population-based comparison of risk of treatment failure. Journal of Affective Disorders, 257, 412-420. https://doi.org/10.1016/j.jad.2019.07.054
Tsujii, N., Otsuka, I., Okazaki, S., Yanagi, M., Numata, S., Yamaki, N., Kawakubo, Y., Shirakawa, O., & Hishimoto, A. (2019). Mitochondrial DNA Copy Number Raises the Potential of Left Frontopolar Hemodynamic Response as a Diagnostic Marker for Distinguishing Bipolar Disorder From Major Depressive Disorder. Frontiers in psychiatry, 10, 312. https://doi.org/10.3389/fpsyt.2019.00312
Unsicker, C., Cristian, F. B., von Hahn, M., Eckstein, V., Rappold, G. A., & Berkel, S. (2021). SHANK2 mutations impair apoptosis, proliferation and neurite outgrowth during early neuronal differentiation in SH-SY5Y cells. Scientific Reports, 11(1), 1-15. https://doi.org/10.1038/s41598-021-81241-4
Vawter, M. P., Hamzeh, A. R., Muradyan, E., Civelli, O., Abbott, G. W., & Alachkar, A. (2019). Association of myoinositol transporters with schizophrenia and bipolar disorder: Evidence from human and animal studies. Complex Psychiatry, 5(4), 200-211. https://doi.org/10.1159/000501125
Verma, M., Lizama, B. N., & Chu, C. T. (2022). Excitotoxicity, calcium and mitochondria: A triad in synaptic neurodegeneration. Translational Neurodegeneration, 11(1), 1-14.
Vieta, E., Berk, M., Schulze, T. G., Carvalho, A. F., Suppes, T., Calabrese, J. R., Gao, K., Miskowiak, K. W., & Grande, I. (2018). Bipolar disorders. Nature reviews. Disease primers, 4, 18008. https://doi.org/10.1038/nrdp.2018.8
Wang, Z., Jun, C., Gao, K., Yang, H., & Fang, Y. (2019). Perspective on etiology and treatment of bipolar disorders in China: Clinical implications and future directions. Neuroscience Bulletin, 35(4), 608–612. https://doi.org/10.1007/s12264-019-00389-2
Wray, N. R., & Gottesman, I. I. (2012). Using summary data from the danish national registers to estimate heritabilities for schizophrenia, bipolar disorder, and major depressive disorder. Frontiers in genetics, 3, 118. https://doi.org/10.3389/fgene.2012.00118
Wu, J. B., & Shih, J. C. (2011). Valproic acid induces monoamine oxidase A via Akt/forkhead box O1 activation. Molecular Pharmacology, 80(4), 714–723. https://doi.org/10.1124/mol.111.072744
Xing, B., Liang, P., Liu, P., Zhao, Y., Chu, Z., & Dang, H. (2015). Valproate inhibits methamphetamine induced hyperactivity via glycogen synthase kinase 3β signaling in the nucleus accumbens core. PLOS ONE, 10(6), e0128068. https://doi.org/10.1371/journal.pone.0128068
Yu, W., & Greenberg, M. L. (2016). Inositol depletion, GSK3 inhibition and bipolar disorder. Future Neurology, 11(2), 135-148. https://doi.org/10.2217/fnl-2016-0003
Yu, W., Daniel, J., Mehta, D., Maddipati, K. R., & Greenberg, M. L. (2017). MCK1 is a novel regulator of myo-inositol phosphate synthase (MIPS) that is required for inhibition of inositol synthesis by the mood stabilizer valproate. PloS One, 12(8), e0182534. https://doi.org/10.1371/journal.pone.0182534
Zhao, W., Zhang, Q., Yu, P., Zhang, Z., Chen, X., Gu, H., Zhai, J., Chen, M., Du, B., Deng, X., Ji, F., Wang, C., Xiang, Y. T., Li, D., Wu, H., Dong, Q., Luo, Y., Li, J., & Chen, C. (2016). The ANK3 gene and facial affect processing: An ERP study. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 171(6), 861-866. https://doi.org/10.1002/ajmg.b.32456
Zhao, G., Zhang, C., Chen, J., Su, Y., Zhou, R., Wang, F., Xia, W., Huang, J., Wang, Z., Hu, Y., Cao, L., Guo, X., Yuan, C., Wang, Y., Yi, Z., Lu, W., Wu, Y., Wu, Z., Hong, W., Peng, D., … Fang, Y. (2017). Ratio of mBDNF to proBDNF for differential diagnosis of major depressive disorder and bipolar depression. Molecular Neurobiology, 54(7), 5573–5582. https://doi.org/10.1007/s12035-016-0098-6
Published
2023-09-29
How to Cite
Salim, M., Abriana, F., Tirta, M., Sanny, S., & Kristiani, L. (2023). Molecular Biomarkers and Pathophysiology Specific to Bipolar Disorder. Indonesian Journal of Life Sciences, 5(02), 83-104. https://doi.org/https://doi.org/10.54250/ijls.v5i02.173
Section
Life Science for Health and Wellbeing