The Potential Use of Algae as Biosorbents for Mercury Removal in the Indonesian Water Bodies

  • Richelle Bertly Josefano Institut Bio Scientia Internasional Indonesia
  • Felicia Lael Belva Institut Bio Scientia Internasional Indonesia
  • Abigail Yoel Institut Bio Scientia Internasional Indonesia
  • Richelle Tirta Rahardja Institut Bio Scientia Internasional Indonesia
  • Nethania Angeline Dharmawan Institut Bio Scientia Internasional Indonesia
  • Noah William Tjandra Oregon State University
  • Mario Donald Bani Institut Bio Scientia Internasional Indonesia
Keywords: Indonesia, Algae, Biosorbents, Mercury, Water Body

Abstract

Contamination of mercury in the water body in Indonesia has become a big concern for many people due to the harmful effects of this heavy metal when it enters the body. Mercury contamination may cause neurological disorders that lead to loss of senses, and damage the brain, the central nervous system, the kidney, and can lead to birth defects. Human activities, such as Coal-Fired Power Plants (CFFPs) and Artisanal and Small-Scale Gold Mining (ASGM) as well as other mining activities, are among  the biggest contributors of mercury emissions in Indonesia’s water body. Biosorbents such as fungi, bacteria and algae can be utilized to alleviate this problem, with algae being the most reliable biosorbent due to its abundance in Indonesia, low cost manufacturing, and high metal ion binding capacity. There are three varieties of algae that can be used as a mercury biosorbent: green algae (Chlorophyta), red algae (Rhodophyta), and brown algae (Phaeophyta). Different studies have shown that the most compatible mercury biosorbent is green algae due to its highest mercury absorption capacity. However, there are  limited studies about the use of algae in Indonesia as mercury biosorbent.

Downloads

Download data is not yet available.

Author Biographies

Richelle Bertly Josefano, Institut Bio Scientia Internasional Indonesia

Department of Biotechnology, Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia

Felicia Lael Belva, Institut Bio Scientia Internasional Indonesia

Department of Biotechnology, Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia

Abigail Yoel, Institut Bio Scientia Internasional Indonesia

Department of Biotechnology, Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia

Richelle Tirta Rahardja, Institut Bio Scientia Internasional Indonesia

Department of Biotechnology, Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia

Nethania Angeline Dharmawan, Institut Bio Scientia Internasional Indonesia

Department of Biotechnology, Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia

Noah William Tjandra, Oregon State University

Department of Integrative Biology, Oregon State University, Corvallis, OR, United States

Mario Donald Bani, Institut Bio Scientia Internasional Indonesia

Department of Biotechnology, Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia

References

Abbas, S. H., Ismail, I. M., Mostafa, T. M., & Sulaymon, A. H. (2009). Biosorption of heavy metals: A review. Journal of Chemical Science and Technology, 3(4), 74–102. https://www.researchgate.net/profile/Abbas-Sulaymon/publication/266795209_Biosorption_of_Heavy_Metals_A_Review/links/544120c90cf2e6f0c0f5ff79/Biosorption-of-Heavy-Metals-A-Review.pdf
Abdel Moneim, A. (2015). Mercury-induced neurotoxicity and neuroprotective effects of berberine. Neural Regeneration Research, 10(6), 881. https://doi.org/10.4103/1673-5374.158336
Adewuyi, A. (2020). Chemically modified biosorbents and their role in the removal of emerging pharmaceutical waste in the water system. Water, 12(6), 1551. doi: 10.3390/w12061551
Ajsuvakova, O. P., Tinkov, A. A., Aschner, M., Rocha, J. B., Michalke, B., Skalnaya, M. G., ... & Bjørklund, G. (2020). Sulfhydryl groups as targets of mercury toxicity. Coordination chemistry reviews, 417, 213343.
Al-Homaidan, A., Al-Qahtani, H., Al-Ghanayem, A., Ameen, F., & Ibraheem, I. (2018). Potential use of green algae as a biosorbent for hexavalent chromium removal from aqueous solutions. Saudi Journal Of Biological Sciences, 25(8), 1733-1738. doi: 10.1016/j.sjbs.2018.07.011
AMAP/UNEP. (2013). AMAP/UNEP technical background report for the global mercury assessment 2013: final technical report; output. Retrieved 27th May 2022 from http://hdl.handle.net/10625/53052
Anastopoulos, I., & Kyzas, G. Z. (2015). Progress in batch biosorption of heavy metals onto algae. Journal of Molecular Liquids, 209, 77–86. https://doi.org/10.1016/j.molliq.2015.05.023
Ankit, Bauddh, K., & Korstad, J. (2022). Phycoremediation: Use of algae to sequester heavy metals. Hydrobiology, 1(3), 288–303. https://doi.org/10.3390/hydrobiology1030021
Azevedo, B., Furieri, L., Peçanha, F. M., Wiggers, G. A., Vassallo, P., Simões, M., Fiorim, J., Batista, P., Fioresi, M., Rossoni, L., Stefanon, I., Alonso, M., Salaices, M., Vassallo, D. (2012). Toxic effects of mercury on the cardiovascular and central nervous systems. Journal of Biomedicine and Biotechnology, 2012, 1–11. https://doi.org/10.1155/2012/949048
Bae, W., Mulchandani, A., & Chen, W. (2002). Cell surface display of synthetic phytochelatins using ice nucleation protein for enhanced heavy metal bioaccumulation. Journal of inorganic biochemistry, 88(2), 223-227.
Barkdull, N. M., Carling, G. T., Rey, K., & Yudiantoro, D. F. (2019). Comparison of mercury contamination in four Indonesian watersheds affected by artisanal and small-scale gold mining of varying scale. Water, Air, & Soil Pollution, 230(9). https://doi.org/10.1007/s11270-019-4271-1
Barsanti, L., & Gualtieri, P. (2014). Algae: Anatomy, biochemistry, and biotechnology (2nd ed.). CRC Press.
Basel and Stockholm Conventions Regional Centre for Southeast Asia BCRC-SEA. (2017). Mercury emissions from coal-fired power plants in Indonesia. Retrieved 27th May 2022 from https://rc-sea.org/category/country-reports/indonesia/
Bayramoğlu, G., Tuzun, I., Celik, G., Yilmaz, M., & Arica, M. Y. (2006). Biosorption of mercury (II), cadmium (II) and lead (II) ions from aqueous system by microalgae Chlamydomonas reinhardtii immobilized in alginate beads. International Journal of Mineral Processing, 81(1), 35-43.
Beetul, K., Gopeechund, A., Kaullysing, D., Mattan-Moorgawa, S., Puchooa, D., & Bhagooli, R. (2016, June 29). Challenges and opportunities in the present era of marine algal applications. Algae - Organisms for Imminent Biotechnology. https://doi.org/10.5772/63272
Berman, M., Chase, T., & Bartha, R. (1990). Carbon flow in mercury biomethylation by desulfovibrio desulfuricans. Applied and Environmental Microbiology, 56(1), 298–300. https://doi.org/10.1128/aem.56.1.298-300.1990
Bernhoft, R. A. (2012). Mercury toxicity and treatment: A review of the literature. Journal of Environmental and Public Health, 2012, 1–10. https://doi.org/10.1155/2012/460508
Bilal, M., Rasheed, T., Sosa-Hernández, J., Raza, A., Nabeel, F., & Iqbal, H. (2018). Biosorption: An interplay between marine algae and potentially toxic elements—A review. Marine Drugs, 16(2), 65. https://doi.org/10.3390/md16020065
Bjørklund, G., Dadar, M., Mutter, J., & Aaseth, J. (2017). The toxicology of mercury: Current research and emerging trends. Environmental Research, 159, 545–554. https://doi.org/10.1016/j.envres.2017.08.051
Bold, H. C., & Wynne, M. J. (1984, October 11). Introduction to the Algae (2nd Edition) (2nd ed.). Benjamin Cummings.
Bose-O’Reilly, S., Bernaudat, L., Siebert, U., Roider, G., Nowak, D., & Drasch, G. (2017, March 22). Signs and symptoms of mercury-exposed gold miners. International Journal of Occupational Medicine and Environmental Health. https://doi.org/10.13075/ijomeh.1896.00715
Brazesh, B., Mousavi, S., Zarei, M., Ghaedi, M., Bahrani, S., & Hashemi, S. (2021). Biosorption. Interface Science And Technology, 587-628. doi: 10.1016/b978-0-12-818805-7.00003-5
Briffa, J., Sinagra, E., & Blundell, R. (2020). Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6(9), e04691. https://doi.org/10.1016/j.heliyon.2020.e04691
Brigelius-Flohé, R., & Maiorino, M. (2013). Glutathione peroxidases. Biochimica et Biophysica Acta (BBA) - General Subjects, 1830(5), 3289–3303. https://doi.org/10.1016/j.bbagen.2012.11.020
Budijono, & Hasbi, M. (2021). Heavy metal contamination in Kotopanjang dam, Indonesia. IOP Conference Series: Earth and Environmental Science, 695(1), 012018. https://doi.org/10.1088/1755-1315/695/1/012018
Bulgariu, D., & Bulgariu, L. (2012). Equilibrium and kinetics studies of heavy metal ions biosorption on green algae waste biomass. Bioresource technology, 103(1), 489-493.
Bulgariu, D., & Bulgariu, L. (2016). Potential use of alkaline treated algae waste biomass as sustainable biosorbent for clean recovery of cadmium (II) from aqueous media: Batch and column studies. Journal of Cleaner Production, 112, 4525-4533.
Cai, X. H., Traina, S. J., Logan, T. J., Gustafson, T., & Sayre, R. T. (1995). Applications of eukaryotic algae for the removal of heavy metals from water. Molecular Marine Biology and Biotechnology, 4(4), 338-344.
Calder, R. S., Bromage, S., & Sunderland, E. M. (2019, January). Risk tradeoffs associated with traditional food advisories for Labrador Inuit. Environmental Research, 168, 496–506. https://doi.org/10.1016/j.envres.2018.09.005
Castilhos, Z. C., Rodrigues-Filho, S., Rodrigues, A. P. C., Villas-Bôas, R. C., Siegel, S., Veiga, M. M., & Beinhoff, C. (2006, September). Mercury contamination in fish from gold mining areas in Indonesia and human health risk assessment. Science of the Total Environment, 368(1), 320–325. https://doi.org/10.1016/j.scitotenv.2006.01.039
Cavanaugh, K., Siegel, D., Reed, D., & Dennison, P. (2011). Environmental controls of giant-kelp biomass in the Santa Barbara Channel, California. Marine Ecology Progress Series, 429, 1–17. https://doi.org/10.3354/meps09141
Cesário, R., Hintelmann, H., Mendes, R., Eckey, K., Dimock, B., Araújo, B., Mota, A. M., Canário, J. (2017). Evaluation of mercury methylation and methylmercury demethylation rates in vegetated and non-vegetated saltmarsh sediments from two Portuguese estuaries. Environmental Pollution, 226, 297–307. https://doi.org/10.1016/j.envpol.2017.03.075
Chan, T. Y. K. (2011). Inorganic mercury poisoning associated with skin-lightening cosmetic products. Clinical Toxicology, 49(10), 886–891. https://doi.org/10.3109/15563650.2011.626425
Chandler, C. J., Wilts, B. D., Brodie, J., & Vignolini, S. (2016). Structural color in marine algae. Advanced Optical Materials, 5(5), 1600646. https://doi.org/10.1002/adom.201600646
Chen, G., Fang, C., Zhang, C., & Chen, Y. (2004). Observing the coupling effect between warm pool and “rain pool” in the Pacific Ocean. Remote Sensing of Environment, 91(2), 153–159. https://doi.org/10.1016/j.rse.2004.02.010
Cheng, S. Y., Show, P. L., Lau, B. F., Chang, J. S., & Ling, T. C. (2019). New prospects for modified algae in heavy metal adsorption. Trends in biotechnology, 37(11), 1255-1268.
Choi, S. C., & Bartha, R. (1993). Cobalamin-mediated mercury methylation by Desulfovibrio desulfuricans LS. Applied and Environmental Microbiology, 59(1), 290–295. https://doi.org/10.1128/aem.59.1.290-295.1993
Cobbett, C., & Goldsbrough, P. (2002). Phytochelatins AND Metallothioneins: Roles. Annu. Rev. Plant Biol, 53, 159-82.
Compeau, G. C., & Bartha, R. (1985). Sulfate-Reducing bacteria: Principal methylators of mercury in anoxic estuarine sediment. Applied and Environmental Microbiology, 50(2), 498–502. https://doi.org/10.1128/aem.50.2.498-502.1985
Cordova, M. R., & Muhtadi, A. (2017). Skrining kemampuan absorpsi merkuri pada makroalga cokelat Hormophysa triquetra dan makroalga merah Gracilaria salicornia dari Pulau Pari. OLDI (Oseanologi dan Limnologi di Indonesia), 2(3), 25-33.
Csavina, J. l., Stuart, B. j., Guy Riefler, R., & Vis, M. l. (2011). Growth optimization of algae for biodiesel production. Journal of Applied Microbiology, 111(2), 312–318. https://doi.org/10.1111/j.1365-2672.2011.05064.x
Dai, J., Balish, R., Meagher, R. B., & Merkle, S. A. (2009). Development of transgenic hybrid sweetgum (Liquidambar styraciflua× L. formosana) expressing γ-glutamylcysteine synthetase or mercuric reductase for phytoremediation of mercury pollution. New forests, 38(1), 35-52.
Danouche, M., El Ghachtouli, N., & El Arroussi, H. (2021). Phycoremediation mechanisms of heavy metals using living green microalgae: physicochemical and molecular approaches for enhancing selectivity and removal capacity. Heliyon, 7(7), e07609.
Darmawan, D., & Sriwahyuni, S. (2022, March 29). Analysis of the distribution of mercury pollution (HG) in river water in pasie raja district, south aceh regency. MORFAI JOURNAL, 2(1), 27–32. https://doi.org/10.54443/morfai.v2i1.195
Delwiche, C. F., & Palmer, J. D. (1997). The origin of plastids and their spread via secondary symbiosis. In D. Bhattacharya (Ed.), Origins of Algae and their Plastids (Vol. 11, pp. 53–86). Springer Vienna. https://doi.org/10.1007/978-3-7091-6542-3_3
Dhankhar, R., & Hooda, A. (2011). Fungal biosorption – an alternative to meet the challenges of heavy metal pollution in aqueous solutions. Environmental Technology, 32(5), 467–491. https://doi.org/10.1080/09593330.2011.572922
Dwivedi, S. (2012). Bioremediation of heavy metal by algae: current and future perspective. Journal of advanced laboratory research in biology, 3(3), 195-199.
Elrefaii, A. H., Sallam, L. A., Hamdy, A. A., & Ahmed, E. F. (2012). Optimization of some heavy metals biosorption by representative Egyptian marine algae 1. Journal of Phycology, 48(2), 471-474.
Esdaile, L. J., & Chalker, J. M. (2018). Frontispiece: The mercury problem in artisanal and small-scale gold mining. Chemistry - A European Journal, 24(27), 6905 - 6916. https://doi.org/10.1002/chem.201882763
Esmaeili, A., Saremnia, B., & Kalantari, M. (2015). Removal of mercury (II) from aqueous solutions by biosorption on the biomass of Sargassum glaucescens and Gracilaria corticata. Arabian Journal of Chemistry, 8(4), 506-511.
Fabre, E., Dias, M., Henriques, B., Viana, T., Ferreira, N., & Soares, J. et al. (2021). Bioaccumulation processes for mercury removal from saline waters by green, brown and red living marine macroalgae. Environmental Science And Pollution Research. https://doi.org/10.1007/s11356-021-12687-2
Faimali, M., Garaventa, F., Terlizzi, A., Chiantore, M., & Cattaneo-Vietti, R. (2004). The interplay of substrate nature and biofilm formation in regulating Balanus amphitrite Darwin, 1854 larval settlement. Journal of Experimental Marine Biology and Ecology, 306(1), 37–50. https://doi.org/10.1016/j.jembe.2003.12.019
Farina, M., & Aschner, M. (2019, December). Glutathione antioxidant system and methylmercury-induced neurotoxicity: An intriguing interplay. Biochimica Et Biophysica Acta (BBA) - General Subjects, 1863(12), 129285. https://doi.org/10.1016/j.bbagen.2019.01.007
Fernandes Azevedo, B., Barros Furieri, L., Peçanha, F. M., Wiggers, G. A., Frizera Vassallo, P., Ronacher Simões, M., ... & Valentim Vassallo, D. (2012). Toxic effects of mercury on the cardiovascular and central nervous systems. Journal of Biomedicine and Biotechnology, 2012.
Figuerola, B., Hancock, A. M., Bax, N., Cummings, V. J., Downey, R., Griffiths, H. J., Smith, J., & Stark, J. S. (2021). A Review and Meta-Analysis of Potential Impacts of Ocean Acidification on Marine Calcifiers From the Southern Ocean. Frontiers in Marine Science, 8. https://www.frontiersin.org/articles/10.3389/fmars.2021.584445
Finke, G., Navarrete, S., & Bozinovic, F. (2007). Tidal regimes of temperate coasts and their influences on aerial exposure for intertidal organisms. Marine Ecology Progress Series, 343, 57–62. https://doi.org/10.3354/meps06918
Fujimura, M., & Usuki, F. (2020). Methylmercury-mediated oxidative stress and activation of the cellular protective system. Antioxidants, 9(10), 1004. https://doi.org/10.3390/antiox9101004
Fulton, C. J., Abesamis, R. A., Berkström, C., Depczynski, M., Graham, N. A. J., Holmes, T. H., Kulbicki, M., Noble, M. M., Radford, B. T., Tano, S., Tinkler, P., Wernberg, T., & Wilson, S. K. (2019). Form and function of tropical macroalgal reefs in the Anthropocene. Functional Ecology, 33(6), 989–999. https://doi.org/10.1111/1365-2435.13282
Gadd, G. M. (2009). Biosorption: Critical review of scientific rationale, environmental importance and significance for pollution treatment. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 84(1), 13-28.
Gao, S., Waller, P., Khawam, G., Attalah, S., Huesemann, M., & Ogden, K. (2018). Incorporation of salinity, nitrogen, and shading stress factors into the Huesemann Algae Biomass Growth model. Algal Research, 35, 462–470. https://doi.org/10.1016/j.algal.2018.09.021
González, F., Romera, E., Ballester, A., Blázquez, M., Muñoz, J., & García-Balboa, C. (2011). Algal biosorption and biosorbents. Microbial Biosorption Of Metals, 159-178. doi: 10.1007/978-94-007-0443-5_7
He, J., & Chen, J. P. (2014). A comprehensive review on biosorption of heavy metals by algal biomass: Materials, performances, chemistry, and modeling simulation tools. Bioresource Technology, 160, 67–78. doi:10.1016/j.biortech.2014.01.068
He, Z., Siripornadulsil, S., Sayre, R. T., Traina, S. J., & Weavers, L. K. (2011). Removal of mercury from sediment by ultrasound combined with biomass (transgenic Chlamydomonas reinhardtii). Chemosphere, 83(9), 1249-1254.
Henriques, B., Rocha, L. S., Lopes, C. B., Figueira, P., Monteiro, R. J., Duarte, A. D. C., ... & Pereira, E. (2015). Study on bioaccumulation and biosorption of mercury by living marine macroalgae: Prospecting for a new remediation biotechnology applied to saline waters. Chemical Engineering Journal, 281, 759-770.
Herbst, D. B., & Castenholz, R. W. (1994). Growth of the Filamentous Green Alga Ctenocladus Circinnatus (chaetophorales, Chlorophyceae) in Relation to Environmental Salinity1. Journal of Phycology, 30(4), 588–593. https://doi.org/10.1111/j.0022-3646.1994.00588.x
Hernández-Carmona, G., Riosmena-Rodríguez, R., Serviere-Zaragoza, E., & Ponce-Díaz, G. (2011). Effect of nutrient availability on understory algae during El Niño Southern Oscillation (ENSO) conditions in Central Pacific Baja California. Journal of Applied Phycology, 23(3), 635–642. https://doi.org/10.1007/s10811-011-9656-5
Ho, M., & Carpenter, R. C. (2017). Differential growth responses to water flow and reduced pH in tropical marine macroalgae. Journal of Experimental Marine Biology and Ecology, 491, 58–65. https://doi.org/10.1016/j.jembe.2017.03.009
Hofmann, L., & Bischof, K. (2014). Ocean acidification effects on calcifying macroalgae. Aquatic Biology, 22, 261–279. https://doi.org/10.3354/ab00581
Houston M. C. (2007). The role of mercury and cadmium heavy metals in vascular disease, hypertension, coronary heart disease, and myocardial infarction. Alternative therapies in health and medicine, 13(2), S128–S133.
Ibuot, A., Dean, A. P., McIntosh, O. A., & Pittman, J. K. (2017). Metal bioremediation by CrMTP4 over-expressing Chlamydomonas reinhardtii in comparison to natural wastewater-tolerant microalgae strains. Algal Research, 24, 89-96.
International Pollutants Elimination Network. (2018, June). Mercury: Country situation report. https://ipen.org/sites/default/files/documents/final_2018b_indonesia_mercury_country_situation.pdf
Ismawati, Y., Petrlik, J., & Digangi, J. (2013, January 13). Mercury hotspots in indonesia. BaliFokus (Indonesia) and Arnika Association (Czech Republic) and the IPEN Heavy Metals Working Group, 1–18. https://doi.org/10.13140/RG.2.2.26150.73282
Ji, L., Xie, S., Feng, J., Li, Y., & Chen, L. (2011). Heavy metal uptake capacities by the common freshwater green alga Cladophora fracta. Journal Of Applied Phycology, 24(4), 979-983. doi: 10.1007/s10811-011-9721-0
Kariyawasam, I. (2016). Seaweed Mariculture: A Potential "Multi-Million Dollar Industry". Healthy Oceans Healthy Planet. ISSN 2279-3208
Kaur, H., Rajor, A., & Kaleka, A. (2018). Role of phycoremediation to remove heavy metals from sewage water: review article. Journal Of Environmental Science And Technology, 12(1), 1-9. doi: 10.3923/jest.2019.1.9
Khan, M. I., Shin, J. H., & Kim, J. D. (2018, March 5). The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microbial Cell Factories, 17(1). https://doi.org/10.1186/s12934-018-0879-x
Krisnayanti, B. D., Anderson, C. W., Utomo, W. H., Feng, X., Handayanto, E., Mudarisna, N., Ikram, H., Khususiah. (2012). Assessment of environmental mercury discharge at a four-year-old artisanal gold mining area on Lombok Island, Indonesia. Journal of Environmental Monitoring, 14(10), 2598–2607. https://doi.org/10.1039/C2EM30515A
Kumar, M., Singh, A., & Sikandar, M. (2020). Biosorption of Hg (II) from aqueous solution using algal biomass: kinetics and isotherm studies. Heliyon, 6(1), e03321. doi: 10.1016/j.heliyon.2020.e03321
Kuroda, K., Shibasaki, S., Ueda, M., & Tanaka, A. (2001). Cell surface-engineered yeast displaying a histidine oligopeptide (hexa-His) has enhanced adsorption of and tolerance to heavy metal ions. Applied microbiology and biotechnology, 57(5), 697-701.
Lanza, W., Achá, D., Point, D., Masbou, J., Alanoca, L., Amouroux, D., & Lazzaro, X. (2016). Association of a Specific Algal Group with Methylmercury Accumulation in Periphyton of a Tropical High-Altitude Andean Lake. Archives Of Environmental Contamination And Toxicology, 72(1), 1-10. doi: 10.1007/s00244-016-0324-2
Lee, R. E. (1989). Phycology (4th ed.). Cambridge University Press. http://deskuenvis.nic.in/pdf/PhycologyLee.pdf
Leukart, P., & Lüning, K. (1994). Minimum spectral light requirements and maximum light levels for long-term germling growth of several red algae from different water depths and a green alga. European Journal of Phycology, 29(2), 103–112. https://doi.org/10.1080/09670269400650551
Liu, Y., Serrano, A., & Villa-Gomez, D. (2021). Biological treatment of mine-impacted waters on the context of metal recovery. The Future of Effluent Treatment Plants, 499–522. https://doi.org/10.1016/b978-0-12-822956-9.00026-x
Lu, N., Hu, T., Zhai, Y., Qin, H., Aliyeva, J., & Zhang, H. (2020, March). Fungal cell with artificial metal container for heavy metals biosorption: Equilibrium, kinetics study and mechanisms analysis. Environmental Research, 182, 109061. https://doi.org/10.1016/j.envres.2019.109061
Lyyra, S., Meagher, R. B., Kim, T., Heaton, A., Montello, P., Balish, R. S., & Merkle, S. A. (2007). Coupling two mercury resistance genes in Eastern cottonwood enhances the processing of organomercury. Plant Biotechnology Journal, 5(2), 254-262.
Meinita, M., Akromah, N., Andriyani, N., SETIJANTO, S., Harwanto, D., & Liu, T. (2021). Molecular identification of Gracilaria species (Gracilariales, Rhodophyta) obtained from the South Coast of Java Island, Indonesia. Biodiversitas Journal Of Biological Diversity, 22(7). doi: 10.13057/biodiv/d220759
Meiyasa, F., Tega, Y. R., Henggu, K. U., Tarigan, N., & Ndahawali, S. (2020). Identifikasi makroalga di perairan Moudolung Kabupaten Sumba Timur. Jurnal Pendidikan dan Biologi, 12(2), 202-210.
Michalak, I., Chojnacka, K., & Witek-Krowiak, A. (2013, May 12). State of the art for the biosorption process—a review. Applied Biochemistry and Biotechnology, 170(6), 1389–1416. https://doi.org/10.1007/s12010-013-0269-0
Ministry of the Environment, Government of Japan. (2002). Minamata disease the history and measures. Retrieved September 25, 2022, from https://www.env.go.jp/en/chemi/hs/minamata2002/
Mokone, J. G. (2018). Development of biotraps based on Cladophora sp alga for the biosorption of mercury from environmental waters. (Doctoral dissertation, Faculty of Science, University of the Witwatersrand, Johannesburg).
Mol, J. H., Ramlal, J. S., Lietar, C., & Verloo, M. (2001, June). Mercury contamination in freshwater, estuarine, and marine fishes in relation to small-scale gold mining in Suriname, South America. Environmental Research, 86(2), 183–197. https://doi.org/10.1006/enrs.2001.4256
Murao, S., Daisa, E., Sera, K., Maglambayan, V. B., & Futatsugawa, S. (2002). PIXE measurement of human hairs from a small-scale mining site of the Philippines. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 189(4), 168–173. https://doi.org/10.1016/s0168-583x(01)01033-3
National Research Council (US) Committee on the Toxicological Effects of Methylmercury. (2000, January 15). Toxicological Effects of Methylmercury (1st ed.). National Academies Press.
NOAA National Weather Service. (n.d.). What is ENSO? NOAA’s National Weather Service. Retrieved August 29, 2022, from https://www.weather.gov/mhx/ensowhat
Nogara, P. A., Oliveira, C. S., Schmitz, G. L., Piquini, P. C., Farina, M., Aschner, M., & Rocha, J. B. T. (2019). Methylmercury’s chemistry: From the environment to the mammalian brain. Biochimica et Biophysica Acta (BBA) - General Subjects. https://doi.org/10.1016/j.bbagen.2019.01.006
Nowicka B. (2022). Heavy metal-induced stress in eukaryotic algae-mechanisms of heavy metal toxicity and tolerance with particular emphasis on oxidative stress in exposed cells and the role of antioxidant response. Environmental science and pollution research international, 29(12), 16860–16911. https://doi.org/10.1007/s11356-021-18419-w
Osório, C., Machado, S., Peixoto, J., Bessada, S., Pimentel, F. B., C. Alves, R., & Oliveira, M. B. P. P. (2020). Pigments Content (Chlorophylls, Fucoxanthin and Phycobiliproteins) of Different Commercial Dried Algae. Separations, 7(2), Article 2. https://doi.org/10.3390/separations7020033
Oucif, H., Benaissa, M., Ali Mehidi, S., Prego, R., Aubourg, S. P., & Abi-Ayad, S. M. E. A. (2020). Chemical composition and nutritional value of different seaweeds from the west Algerian coast. Journal of Aquatic Food Product Technology, 29(1), 90-104.
Pangestuti, R., & Kim, S.-K. (2011). Biological activities and health benefit effects of natural pigments derived from marine algae. Journal of Functional Foods, 3(4), 255–266. https://doi.org/10.1016/j.jff.2011.07.001
Park, J. D., & Zheng, W. (2012). Human exposure and health effects of inorganic and elemental mercury. Journal of preventive medicine and public health, 45(6), 344–352. https://doi.org/10.3961/jpmph.2012.45.6.344
Patel, A. K., Albarico, F. P. J. B., Perumal, P. K., Vadrale, A. P., Nian, C. T., Chau, H. T. B., Anwar, C., Wani, H. M. ud din, Pal, A., Saini, R., Ha, L. H., Senthilkumar, B., Tsang, Y.-S., Chen, C.-W., Dong, C.-D., & Singhania, R. R. (2022). Algae as an emerging source of bioactive pigments. Bioresource Technology, 351, 126910. https://doi.org/10.1016/j.biortech.2022.126910
Paula, J. C. D., Coração, A. C. S., Lopes-Filho, E. a. P., Silva, R. P., Santos, L. N. D., & Carvalho, W. F. D. (2020). Diversity and turnover in a rocky shore intertidal community of an upwelling region (Arraial do Cabo, Brazil). Anais Da Academia Brasileira de Ciências, 92. https://doi.org/10.1590/0001-3765202020181096
Pennesi, C., Totti, C., Romagnoli, T., Bianco, B., De Michelis, I., & Beolchini, F. (2012). Marine macrophytes as effective lead biosorbents. Water Environment Research, 84(1), 9-16.
Perona, E., Sánchez-Díaz, E., & Loza, V. (2011). Morphological and ecological characterization of batrachospermales (rhodophyta) in the jarama basin, iberian peninsula. Limnetica, 30(1), 117–128. https://doi.org/10.23818/limn.30.10
Prasetyo, H., Setyaningsih, I., & Agungpriyono, D. R. (2015). Growth and extracelluler polysaccaride production of Porphyridium cruentum in various photoperiod. Jurnal Pengolahan Hasil Perikanan Indonesia, 18(2), 219-229.
Puente-Sánchez, F., Díaz, S., Penacho, V., Aguilera, A., & Olsson, S. (2018). Basis of genetic adaptation to heavy metal stress in the acidophilic green alga Chlamydomonas acidophila. Aquatic Toxicology, 200, 62-72.
Purba, N. P., & Khan, A. M. A. (2019a). Upwelling session in Indonesia waters. World News of Natural Sciences, 25, 72–83.
Purba, N. P., & Khan, A. M. A. (2019b). Upwelling session in Indonesia waters. World News of Natural Sciences, 25, 72–83.
Putra, A. W., & Fitri, W. E. (2016). Karakterisasi pertukaran ion Timbal (II) dengan Kalsium pada proses biosorpsi alga hijau Cladophora fracta. Jurnal Ipteks Terapan, 10(2), 103-111.
Putri, L. S. E., & Syafiqa, E. (2019). The adsorption of heavy metals from industrial wastewater using sargassum crassifolium. GEOMATE Journal, 17(59), 21-27.
Quiroga-Flores, R., Guédron, S., & Achá, D. (2021). High methylmercury uptake by green algae in Lake Titicaca: Potential implications for remediation. Ecotoxicology And Environmental Safety, 207, 111256. doi: 10.1016/j.ecoenv.2020.111256
Rajamani, S., Siripornadulsil, S., Falcao, V., Torres, M., Colepicolo, P., & Sayre, R. (2007). Phycoremediation of heavy metals using transgenic microalgae. Transgenic microalgae as green cell factories, 99-109.
Ramdan, M. R., & NuraenI, E. (2021). Identifikasi morfologi Ulva intestinalis dan Acanthophora spicifera di kawasan Pantai Tanjung Layar, Sawarna, Bayah, Kabupaten Lebak, Banten. Tropical Bioscience: Journal of Biological Science, 1(1), 1-10.
Raven, J. & Giordano, M. (2014). Algae. Current Biology, 24(13), 590 - 595. https://doi.org/10.1016/j.cub.2014.05.039
Reichelt-Brushett, A. J., Stone, J., Howe, P., Thomas, B., Clark, M., Male, Y., Nanlohy, A., & Butcher, P. (2017, January). Geochemistry and mercury contamination in receiving environments of artisanal mining wastes and identified concerns for food safety. Environmental Research, 152, 407–418. https://doi.org/10.1016/j.envres.2016.07.007
Rice, K. M., Walker, E. M., Wu, M., Gillette, C., & Blough, E. R. (2014). Environmental mercury and its toxic effects. Journal of Preventive Medicine & Public Health, 47(2), 74–83. https://doi.org/10.3961/jpmph.2014.47.2.74
Roberts, R. D., Barker, M. F., & Mladenov, P. (2010). Is Settlement of Haliotis iris Larvae on Coralline Algae Triggered by the Alga or Its Surface Biofilm? Journal of Shellfish Research, 29(3), 671–678. https://doi.org/10.2983/035.029.0317
Rochaddi, B., Atmodjo, W., Satriadi, A., Suryono, C. A., Irwani, I., & Widada, S. (2019). The heavy metal contamination in shallow groundwater at coastal areas of surabaya east java indonesia. Jurnal Kelautan Tropis, 22(1), 69. https://doi.org/10.14710/jkt.v22i1.4464
Rochaddi, B., Sabdono, A., & Zainuri, M. (2020). Heavy metal (as and hg) contamination of shallow groundwater in the coastal areas of pati and rembang, central java, indonesia. IOP Conference Series: Earth and Environmental Science, 530(1), 012035. https://doi.org/10.1088/1755-1315/530/1/012035
Rothenberg, S. E., Yin, R., Hurley, J. P., Krabbenhoft, D. P., Ismawati, Y., Hong, C., Donohue, A. (2017). Stable mercury isotopes in polished rice (Oryza sativa L.) and hair from rice consumers. Environmental Science & Technology, 51(11), 6480–6488. https://doi.org/10.1021/acs.est.7b01039
Ruiz, O. N., & Daniell, H. (2009). Genetic engineering to enhance mercury phytoremediation. Current opinion in biotechnology, 20(2), 213-219.
Rytuba, J. J. (2003). Mercury from mineral deposits and potential environmental impact. Environmental Geology, 43(3), 326–338. https://doi.org/10.1007/s00254-002-0629-5
Salam, K. A. (2019). Towards sustainable development of microalgal biosorption for treating effluents containing heavy metals. Biofuel Research Journal, 6(2), 948.
Saldarriaga-Hernandez, S., Nájera-Martínez, E. F., Martínez-Prado, M. A., & Melchor-Martínez, E. M. (2020). Sargassum-based potential biosorbent to tackle pollution in aqueous ecosystems – an overview. Case Studies in Chemical and Environmental Engineering, 2, 100032. https://doi.org/10.1016/j.cscee.2020.100032
Santos, A., Ferrer, B., Gonçalves, M. F., Tsatsakis, A., Renieri, E., Skalny, A., Farina, M., Rocha, J., Aschner, M. (2018). Oxidative stress in methylmercury-induced cell toxicity. Toxics, 6(3), 47. https://doi.org/10.3390/toxics6030047
Schuster, P., Shanley, J., Marvin-Dipasquale, M., Reddy, M., Aiken, G., Roth, D., Taylor, H., Krabbenhoft, D., DeWild, J. (2008). Mercury and organic carbon dynamics during runoff episodes from a northeastern USA watershed. Water, Air, and Soil Pollution, 187(1–4), 89–108. https://doi.org/10.1007/s11270-007-9500-3
Serôdio, J., Marques da Silva, J., & Catarino, F. (1997). Nondestructive Tracing of Migratory Rhythms of Intertidal Benthic Microalgae Using in Vivo Chlorophyll a Fluorescence1,2. Journal of Phycology, 33(3), 542–553. https://doi.org/10.1111/j.0022-3646.1997.00542.x
Shandley, K., & Austin, D. W. (2011, July 28). Ancestry of pink disease (infantile acrodynia) identified as a risk factor for autism spectrum disorders. Journal of Toxicology and Environmental Health, Part A, 74(18), 1185–1194. https://doi.org/10.1080/15287394.2011.590097
Sheng, P. X., Ting, Y. P., Chen, J., & Hong, L. (2004, July). Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms. Journal of Colloid and Interface Science, 275(1), 131–141. https://doi.org/10.1016/j.jcis.2004.01.036
Silver, S., & Phung, L. T. (2005). A bacterial view of the periodic table: genes and proteins for toxic inorganic ions. Journal of Industrial Microbiology and Biotechnology, 32(11-12), 587-605.
Singh, S., Kumar, V., Datta, S., Dhanjal, D. S., Sharma, K., Samuel, J., & Singh, J. (2020). Current advancement and future prospect of biosorbents for bioremediation. Science of the Total Environment, 709, 135895.
Singh, S. P., & Singh, P. (2015). Effect of temperature and light on the growth of algae species: A review. Renewable and Sustainable Energy Reviews, 50, 431–444. https://doi.org/10.1016/j.rser.2015.05.024
SNI Indonesia National Standard. (2009). Maximum Limits of Heavy Metal Contamination in Food (in Bahasa Indonesia). No. SNI 7387:2009.
Souza, P., Ferreira, L., Pires, N., S. Filho, P., Duarte, F., Pereira, C., & Mesko, M. (2012). Algae of economic importance that accumulate cadmium and lead: a review. Revista Brasileira De Farmacognosia, 22(4), 825-837. doi: 10.1590/s0102-695x2012005000076
Spiegel, S. J., Agrawal, S., Mikha, D., Vitamerry, K., Le Billon, P., Veiga, M., Konolius, K., Paul, B. (2018). Phasing out mercury? Ecological economics and Indonesia’s small-scale gold mining sector. Ecological Economics, 144, 1–11. https://doi.org/10.1016/j.ecolecon.2017.07.025
Sturt, M. M., Jansen, M. a. K., & Harrison, S. S. C. (2011). Invertebrate grazing and riparian shade as controllers of nuisance algae in a eutrophic river. Freshwater Biology, 56(12), 2580–2593. https://doi.org/10.1111/j.1365-2427.2011.02684.x
Suárez, L. V., Gil, S. G., Gentien, P., Lunven, M., Bechemin, C., Fernand, L., Raine, R., & Reguera, B. (2008). Thin layers of Pseudo-nitzschia spp. And the fate of Dinophysis acuminata during an upwelling-downwelling cycle in a Galician RÃa. Limnology and Oceanography, 53(5), 1816–1834. https://doi.org/10.4319/lo.2008.53.5.1816
Sumandiarsa, I. K., Bengen, D. G., Santoso, J., & Januar, H. I. (2021). The impact of spatio-temporal variation on seawater quality and its effect on the domination of Sargassum polycystum on small islands in Western Indonesian waters. Environment Asia, 14(1).
Sundseth, K., Pacyna, J. M., Pacyna, E. G., Pirrone, N., & Thorne, R. J. (2017). Global sources and pathways of mercury in the context of human health. International journal of environmental research and public health, 14(1), 105. https://doi.org/10.3390/ijerph14010105
Susanti, R., Widiyastuti, K., Yuniastuti, A., & Fibriana, F. (2020). Feed and water management may influence the heavy metal contamination in domestic ducks from Central Java, Indonesia. Water, Air, & Soil Pollution, 231(4), 177. https://doi.org/10.1007/s11270-020-04559-1
Suwarno, D., Löhr, A., Kroeze, C., & Widianarko, B. (2013). Past and future trends in nutrient export by 19 rivers to the coastal waters of Indonesia. Journal of Integrative Environmental Sciences, 10(1), 55–71. https://doi.org/10.1080/1943815X.2013.772902
Swain, E. B., Jakus, P. M., Rice, G., Lupi, F., Maxson, P. A., Pacyna, J. M., Penn, A., Spiegel, S. J., & Veiga, M. M. (2007, February). Socioeconomic consequences of mercury use and pollution. AMBIO: A Journal of the Human Environment, 36(1), 45–61. http://dx.doi.org/10.1579/0044-7447(2007)36[45:scomua]2.0.co;2
Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metal toxicity and the environment. Experientia supplementum (2012), 101, 133–164. https://doi.org/10.1007/978-3-7643-8340-4_6
Teoh, M.-L., Phang, S.-M., & Chu, W.-L. (2013). Response of Antarctic, temperate, and tropical microalgae to temperature stress. Journal of Applied Phycology, 25(1), 285–297. https://doi.org/10.1007/s10811-012-9863-8
Tompkins, P., & Wolff, M. (2017). Galápagos macroalgae: A review of the state of ecological knowledge. Revista De Biologia Tropical, 65(1), 375–392. https://doi.org/10.15517/rbt.v65i1.18139
Tüzün, I., Bayramoğlu, G., Yalçın, E., Başaran, G., Celik, G., & Arıca, M. Y. (2005). Equilibrium and kinetic studies on biosorption of Hg (II), Cd (II) and Pb (II) ions onto microalgae Chlamydomonas reinhardtii. Journal of Environmental Management, 77(2), 85-92.
Utomo, B. A., & Effendi, H. (2022). Heavy metals contamination and water quality parameter conditions in Jatiluhur reservoir, West Java, indonesia. BIOTROPIA, 29(1). https://doi.org/10.11598/btb.2022.29.1.1443
van Ginneken, V., & de Vries, E. (2018). Seaweeds as biomonitoring system for heavy metal (HM) accumulation and contamination of our oceans. American Journal of Plant Sciences, 09(07), 1514–1530. https://doi.org/10.4236/ajps.2018.97111
Wang, H., Zhou, Y., Xia, K., Yang, R., & Liu, X. (2016). Flow-disturbance considered simulation for algae growth in a river–lake system. Ecohydrology, 9(4), 601–609. https://doi.org/10.1002/eco.1659
Wang, J., & Chen, C. (2009). Biosorbents for heavy metals removal and their future. Biotechnology Advances, 27(2), 195-226. doi: 10.1016/j.biotechadv.2008.11.002
Wehrs, M., Tanjore, D., Eng, T., Lievense, J., Pray, T. R., & Mukhopadhyay, A. (2019). Engineering robust production microbes for large-scale cultivation. Trends in Microbiology, 27(6), 524–537. https://doi.org/10.1016/j.tim.2019.01.006
Wirasatriya, A., Susanto, R. D., Kunarso, K., Jalil, Abd. R., Ramdani, F., & Puryajati, A. D. (2021). Northwest monsoon upwelling within the Indonesian seas. International Journal of Remote Sensing, 42(14), 5433–5454. https://doi.org/10.1080/01431161.2021.1918790
World Health Organization (WHO). (2017, March 31). Mercury and health. Retrieved September 25, 2022, from https://www.who.int/news-room/fact-sheets/detail/mercury-and-health
Yang, X., Wan, Y., Zheng, Y., He, F., Yu, Z., & Huang, J. et al. (2019). Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: A critical review. Chemical Engineering Journal, 366, 608-621. doi: 10.1016/j.cej.2019.02.119
Yokoyama, H. (2020). Mercury Pollution in Minamata. Saint Philip Street Press.
Zaib, M., Athar, M. M., Saeed, A., Farooq, U., Salman, M., & Makshoof, M. N. (2016). Equilibrium, kinetic and thermodynamic biosorption studies of Hg (II) on red algal biomass of Porphyridium cruentum. Green Chemistry Letters and Reviews, 9(4), 179-189.
Zeraatkar, A. K., Ahmadzadeh, H., Talebi, A. F., Moheimani, N. R., & McHenry, M. P. (2016, October). Potential use of algae for heavy metal bioremediation, a critical review. Journal of Environmental Management, 181, 817–831. https://doi.org/10.1016/j.jenvman.2016.06.059
Znad, H., Awual, M. R., & Martini, S. (2022). The utilization of algae and seaweed biomass for bioremediation of heavy metal-contaminated wastewater. Molecules, 27(4), 1275.
Zulaikhah, S. T., Wahyuwibobo, J., & Pratama, A. A. (2020). Mercury and its effect on human health: A review of the literature. International Journal of Public Health Science, 9(2), 103-114. https://doi.org/10.11591/ijphs.v9i2.20416
Published
2023-09-29
How to Cite
Josefano, R., Belva, F., Yoel, A., Rahardja, R., Dharmawan, N., Tjandra, N., & Bani, M. (2023). The Potential Use of Algae as Biosorbents for Mercury Removal in the Indonesian Water Bodies. Indonesian Journal of Life Sciences, 5(02), 59-82. https://doi.org/https://doi.org/10.54250/ijls.v5i02.164
Section
Bio-product and Services for Sustainable Society