In silico investigation of bioactive compounds from Ginkgo biloba as alternatives to non-steroidal anti-inflammatory drugs

  • Jyotsna Jai Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia
  • Stephanie Angela Yosiano Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia
  • Tifara Elaine Trisna Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia
  • Agnes Maria Rosaceae Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia
  • Laurentius Hardy Kurniawan Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia
  • Rizky Nurdiansyah Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia
Keywords: NSAIDs, Molecular Docking, Phytocompounds, Receptor-ligand interactions, Drug likeness


Non-steroidal Anti-inflammatory Drugs (NSAIDs) are common over-the-counter drugs that are used for numerous inflammation-associated ailments. Despite their widespread consumption, these synthetic drugs are not without side effects. Adversities caused by NSAIDs range from simple nausea and vomiting to fatal conditions such as hypertension, gastrointestinal bleeding and diminished renal function. There is thus a need to develop novel alternatives to these drugs which possess comparable efficacies. Phytocompounds are attractive alternatives for a plethora of medicines used for various disorders and diseases as they are readily available in nature and have negligible side effects. In an attempt to identify safe alternatives to NSAIDs, we tested six bioactive compounds from Ginkgo biloba (Ginkgolide A, Amentoflavone, Bilobetin, Ginkgetin, Quercetin, and Bilobalide) for their abilities to inhibit Cyclooxygenase-1, Cyclooxygenase-2 and 5-Lipoxygenase which are inflammation-causing enzymes. Molecular docking experiments using Autodock Vina resulted in binding energy values between -6.6 and -11.9 kcal/mol, comparable to that of control drugs, which indicated that the tested phytocompounds were able to bind strongly to the active sites of the three proteins. Analyses of receptor-ligand interactions using Discovery Studio Visualizer revealed that all the tested compounds formed numerous non-covalent interactions with the surrounding amino acid residues, which confirmed their binding stabilities. Finally, evaluation of their drug likeness based on Lipinski’s rule of five showed that the tested G. biloba compounds possess the potential to be taken as oral drugs to replace conventional NSAIDs.


Download data is not yet available.

Author Biographies

Jyotsna Jai, Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia

Department of Biotechnology, Institut Bio Scientia Internasional Indonesia

Stephanie Angela Yosiano, Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia

Department of Biotechnology, Institut Bio Scientia Internasional Indonesia

Tifara Elaine Trisna, Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia

Department of Biotechnology, Institut Bio Scientia Internasional Indonesia

Agnes Maria Rosaceae, Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia

Department of Biotechnology, Institut Bio Scientia Internasional Indonesia

Laurentius Hardy Kurniawan, Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia

Department of Biotechnology, Institut Bio Scientia Internasional Indonesia

Rizky Nurdiansyah, Institut Bio Scientia Internasional Indonesia, Jakarta, Indonesia

Department of Bioinformatics, Institut Bio Scientia Internasional Indonesia


Allouche, A. (2012). Software News and Updates Gabedit — A Graphical User Interface for Computational Chemistry Softwares. Journal of Computational Chemistry, 32, 174–182.
Attie, A. D., & Raines, R. T. (2017). Analysis of Receptor – Ligand Interactions. 72(2), 119–124.
Benet, L. Z., Hosey, C. M., Ursu, O., & Oprea, T. I. (2016). BDDCS, the Rule of 5 and drugability. In Advanced Drug Delivery Reviews (Vol. 101).
Chan, P. C., Xia, Q., & Fu, P. P. (2007). Ginkgo biloba leave extract: Biological, medicinal, and toxicological effects. Journal of Environmental Science and Health - Part C Environmental Carcinogenesis and Ecotoxicology Reviews, 25(3), 211–244.
Cheke, R. S. (2020). The Molecular Docking Study of Potential Drug Candidates Showing Anti-COVID-19 Activity by Exploring of Therapeutic Targets of SARS-CoV-2. Eurasian Journal of Medicine and Oncology, 4(3), 185–195.
D Studio, & ‏. (2008). Discovery Studio Life Science Modeling and Simulations. Researchgate.Net‏, 1–8.
Davis, A., & Robson, J. (2016). The dangers of NSAIDs: Look both ways. British Journal of General Practice, 66(645), 172–173.
Du, X., Li, Y., Xia, Y. L., Ai, S. M., Liang, J., Sang, P., Ji, X. L., & Liu, S. Q. (2016). Insights into protein–ligand interactions: Mechanisms, models, and methods. International Journal of Molecular Sciences, 17(2), 1–34.
Ferreira De Freitas, R., & Schapira, M. (2017). A systematic analysis of atomic protein-ligand interactions in the PDB. MedChemComm, 8(10), 1970–1981.
Forni, C., Facchiano, F., Bartoli, M., Pieretti, S., Facchiano, A., D’Arcangelo, D., Norelli, S., Valle, G., Nisini, R., Beninati, S., Tabolacci, C., & Jadeja, R. N. (2019). Beneficial role of phytochemicals on oxidative stress and age-related diseases. BioMed Research International, 2019(Figure 1).
Giménez, B. G., Santos, M. S., Ferrarini, M., & Dos Santos Fernandes, J. P. (2010). Evaluation of blockbuster drugs under the rule-of-five. Pharmazie, 65(2), 148–152.
Gunaydin, C., & Bilge, S. S. (2018). Effects of nonsteroidal anti-inflammatory drugs at the molecular level. Eurasian Journal of Medicine, 50(2), 116–121.
Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeerschd, T., Zurek, E., & Hutchison, G. R. (2012). Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4(8).
Hariono, M., Abdullah, N., Damodaran, K. V., Kamarulzaman, E. E., Mohamed, N., Hassan, S. S., Shamsuddin, S., & Wahab, H. A. (2016). Potential New H1N1 Neuraminidase Inhibitors from Ferulic Acid and Vanillin: Molecular Modelling, Synthesis and in Vitro Assay. Scientific Reports, 6(November), 1–10.
Hossen, I., Hua, W., Ting, L., Mehmood, A., Jingyi, S., Duoxia, X., Yanping, C., Hongqing, W., Zhipeng, G., Kaiqi, Z., Fang, Y., & Junsong, X. (2020). Phytochemicals and inflammatory bowel disease: a review. Critical Reviews in Food Science and Nutrition, 60(8), 1321–1345.
Hu, C., & Ma, S. (2018). Recent development of lipoxygenase inhibitors as anti-inflammatory agents. MedChemComm, 9(2), 212–225.
Ilhan, N., Susam, S., Ak, T. P., & Baykalir, B. G. (2018). The antiiflammatory effect of Ginkgo biloba in lipopolysaccharide-induced rat sepsis model. Journal of Laboratory Medicine, 42(1–2), 45–49.
Lipinski, C. A. (2004). Lead- and drug-like compounds: The rule-of-five revolution. Drug Discovery Today: Technologies, 1(4), 337–341.
Mihiri Shashikala, H. B., Chakravorty, A., & Alexov, E. (2019). Modeling electrostatic force in protein-protein recognition. Frontiers in Molecular Biosciences, 6(SEP), 1–11.
Mukhi, M., & Jai, J. (2020). Evaluating the potency of three plant compounds as HDAC Inhibitors for the treatment of Huntington’s disease: An in silico study. International Journal of Herbal Medicine, 8(5), 10–13.
NSAIDs. (2019). Retrieved 22 February 2022, from,causes%20of%20long%2Dterm%20pain.
Pacheco, A. B., & Hpc, L. S. U. (2012). Introduction to AutoDock and AutoDock Tools.
Pantsar, T., & Poso, A. (2018). Binding affinity via docking: Fact and fiction. Molecules, 23(8), 1DUMMY.
Shah, Z. A., Nada, S. E., & Doré, S. (2011). Heme oxygenase 1, beneficial role in permanent ischemic stroke and in Gingko biloba (EGb 761) neuroprotection. Neuroscience, 180, 248–255.
Son, J. K., Son, M. J., Lee, E., Moon, T. C., Son, K. H., Kim, C. H., Kim, H. P., Kang, S. S., & Chang, H. W. (2005). Ginkgetin, a biflavone from Ginko biloba leaves, inhibits cyclooxygenases-2 and 5-lipoxygenase in mouse bone marrow-derived mast cells. Biological and Pharmaceutical Bulletin, 28(12), 2181–2184.
Tallei, T. E., Tumilaar, S. G., Niode, N. J., Fatimawali, Kepel, B. J., Idroes, R., Effendi, Y., Sakib, S. A., & Emran, T. Bin. (2020). Potential of Plant Bioactive Compounds as SARS-CoV-2 Main Protease (Mpro) and Spike (S) Glycoprotein Inhibitors: A Molecular Docking Study. Scientifica, 2020.
Tao, Z., Jin, W., Ao, M., Zhai, S., Xu, H., & Yu, L. (2019). Evaluation of the anti-inflammatory properties of the active constituents in Ginkgo biloba for the treatment of pulmonary diseases. Food and Function, 10(4), 2209–2220.
Tian, X. Q., Zhang, L. Da, Wang, J. M., Dai, J. G., Shen, S. S., Yang, L., & Huang, P. L. (2013). The protective effect of hyperbaric oxygen and Ginkgo biloba extract on Aβ25-35-induced oxidative stress and neuronal apoptosis in rats. Behavioural Brain Research, 242(1), 1–8.
Tulsulkar, J., & Shah, Z. A. (2013). Ginkgo biloba prevents transient global ischemia-induced delayed hippocampal neuronal death through antioxidant and anti-inflammatory mechanism. Neurochemistry International, 62(2), 189–197.
Wishart, D. S., Knox, C., Guo, A. C., Cheng, D., Shrivastava, S., Tzur, D., Gautam, B., & Hassanali, M. (2008). DrugBank: A knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Research, 36(SUPPL. 1), 901–906.
Wolfe, D., Yazdi, F., Kanji, S., Burry, L., Beck, A., Butler, C., Esmaeilisaraji, L., Hamel, C., Hersi, M., Skidmore, B., Moher, D., & Hutton, B. (2018). Incidence, causes, and consequences of preventable adverse drug reactions occurring in inpatients: A systematic review of systematic reviews. In PLoS ONE (Vol. 13, Issue 10).
Zhang, Y. J., Gan, R. Y., Li, S., Zhou, Y., Li, A. N., Xu, D. P., Li, H. Bin, & Kitts, D. D. (2015). Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules, 20(12), 21138–21156.
Life Science for Health and Wellbeing