A Review on Bacterial Cellulose: Properties, Applications, Fermentative Production, and Molasses Potential as Alternative Medium

  • Clara Angela Indonesia International Institute for Life Sciences
  • Putu Virgina Partha Devanthi Indonesia International Institute for Life Sciences
Keywords: Bacterial cellulose, biopolymer, Acetobacter xylinum, molasses, low-cost fermentation

Abstract

Bacterial cellulose (BC) is an extracellular homopolymer produced by certain species of bacteria. It has demonstrated the potential as an alternative to plant cellulose with more appealing features such as unique nanostructure, high porosity, high crystallization index, high tensile strength, high water holding capacity, and a high degree of polymerization. These attributes facilitate BC utilization in various applications, ranging from the food industry, cosmetics, pharmaceutical, medical field, waste treatment, textile, and paper industry. Considering the advantages and wide range of applications, it is necessary to explore and improve the current industrial production to achieve a higher yield at a lower cost. This review article summarizes the BC properties and characteristics as well as its application in different fields. Furthermore, the potential of agricultural waste molasses for low-cost BC production is also discussed.

Downloads

Download data is not yet available.

Author Biographies

Clara Angela, Indonesia International Institute for Life Sciences

Biotechnology Department, Indonesia International Institute for Life Sciences, Jakarta, Indonesia

Putu Virgina Partha Devanthi, Indonesia International Institute for Life Sciences

Biotechnology Department, Indonesia International Institute for Life Sciences, Jakarta, Indonesia

References

Bae, S., & Shoda, M. (2004). Bacterial cellulose production by fed-batch fermentation in molasses medium. Biotechnology Progress, 20(5), 1366–1371. doi:10.1021/bp0498490 Bielecki, S., Krystynowicz, A., Turkiewicz, M., & Kalinowska, H. (2005). Bacterial cellulose. Polysaccharides and Polyamides in the Food Industry: Properties, Production, and Patents, 31-84.
Brown, Adrian J. (1886). An acetic ferment which forms cellulose. Chemical Society 49, 432–439.
Ҫakar, F, Özer, I., Aytekin, A.Ö., Şahin, F. (2014). Improvement production of bacterial cellulose by semi-continuous process in molasses medium. Carbohydrate Polymers 106, 7–13.
Chakravorty, S., Bhattacharya, S., Chatzinotas, A., Chakraborty, W., Bhattacharya, D., & Gachhui, R. (2016). Kombucha tea fermentation: microbial and biochemical dynamics. International Journal of Food Microbiology, 220, 63–72. doi:10.1016/j.ijfoodmicro.2015.12.015
Chau, C., Yang, P., Yu, C., & Yen, G. (2008). Investigation on the lipid- and cholesterol-lowering abilities of biocellulose. Journal of Agricultural and Food Chemistry, 56(6), 2291-2295. doi:10.1021/jf7035802
Chawla, P. R., Bajaj, I. B., Survase, S. A., & Singhal, R. S. (2009). Microbial cellulose: fermentative production and applications. Food Technology and Biotechnology, 47(2), 107–124.
Chen, L., Zou, M., Hong, F. F. (2015). Erratum: Evaluation of fungal laccase immobilized on natural nanostructured bacterial cellulose. (2015). Frontiers in Microbiology, 6. doi:10.3389/fmicb.2015.01327 Danielova, L., T. (1954). K morfologii “čajnogo griba”. Trudy Erevanskogo Zooveterinarnogo Institute, 17, 201–16. De Iannino, N. I., Couso, R. O., & Dankert, M. A. (1988). Lipid-linked intermediates and the synthesis of acetan in Acetobacter xylinum. Microbiology, 134(6), 1731-1736. De Ley, J., Gillis, M. and Swings, J. (1984) Family VI. Acetobacteriaceae, Bergey's Manual of Systematic Bacteriology. In: Krieg and Holt, J.G., Eds., The Williams and Wilkin Co., Baltimore, Vol. 1, 267-278.
Esa, F., Tasirin, S. M., & Rahman, N. A. (2014). Overview of bacterial cellulose production and application. Agriculture and Agricultural Science Procedia, 2, 113–119. doi:10.1016/j.aaspro.2014.11.017
Gao, W., H., Chen, K., F., Yang, R., D., Yang, F., Han, W., J. (2011). Properties of bacterial cellulose and ist influence on the physical properties of paper. BioResources, 6(1), 144-153.
Goh, W. N., Rosma, A., Kaur, B., Fazilah, A., Karim, A. A., & Bhat, R. (2012). Fermentation of black tea broth (Kombucha): I. effects of sucrose concentration and fermentation time on the yield of microbial cellulose. International Food Research Journal, 19(1), 109–117. Hestrin, S., & Schramm, M. J. B. J. (1954). Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochemical Journal, 58(2), 345.
Huang, Y., Zhu, C., Yang, J., Nie, Y., Chen, C., & Sun, D. (2014). Recent advances in bacterial cellulose. Cellulose, 21(1), 1–30. doi:10.1007/s10570-013-0088-z Iguchi, M., Yamanaka, S., & Budhiono, A. (2000). Journal of Materials Science, 35(2), 261–270. doi:10.1023/a:1004775229149 Jaya, A.K, & Mahendra, S. (2008). Pra desain pabrik etanol dari molasses. https://www.slideshare.net/mah3ndr4/indonesia-mandiri (accessed 12 May 2021)
Jayabalan, R., Malbaša, R. V., Lončar, E. S., Vitas, J. S., & Sathishkumar, M. (2014). A review on Kombucha tea-microbiology, composition, fermentation, beneficial effects, toxicity, and tea fungus. Comprehensive Reviews in Food Science and Food Safety, 13(4), 538–550. doi:10.1111/1541-4337.12073
Kaplan, E., Ince, T., Yorulmaz, E., Yener, F., Harputlu, E., & Laçin, N. T. (2014). Controlled delivery of ampicillin and gentamycin from cellulose hydrogels and their antibacterial efficiency. Journal of Biomaterials and Tissue Engineering, 4(7), 543-549. doi:10.1166/jbt.2014.1198
Keshk, S. M. a S., Razek, T. M. a, & Sameshima, K. (2006). Bacterial cellulose production from beet molasses. Acta Biomater., 5(17), 1519–1523.
Keshk, S., & Sameshima, K. (2006). The utilization of sugar cane molasses with/without the presence of lignosulfonate for the production of bacterial cellulose. Applied Microbiology and Biotechnology, 72(2), 291–296. doi:10.1007/s00253-005-0265-6
Konovalov, I., N., Semenova, M., N. (1955). K Fiziologii “Cajnogo Griba”. Bot Žurnal (Moscow) 40, 567–70.
Krystynowicz, A., Czaja, W., Wiktorowska-Jezierska, A., Gonçalves-Miśkiewicz, M., Turkiewicz, M., & Bielecki, S. (2002). Factors affecting the yield and properties of bacterial cellulose. Journal of Industrial Microbiology & Biotechnology, 29(4), 189-195. doi:10.1038/sj/jim/7000303
Lee, K. Y., Buldum, G., Mantalaris, A., & Bismarck, A. (2014). More than meets the eye in bacterial cellulose: Biosynthesis, bioprocessing, and applications in advanced fiber composites. Macromolecular Bioscience, 14(1), 10–32. doi:10.1002/mabi.201300298
Legendre, J. Y. (2008). U.S. Patent No. US20090041815A1. Washington, DC: U.S. Patent and Trademark Office.
Liu, C., Hsu, W., Lee, F., & Liao, C. (1996). The isolation and identification of microbes from a fermented tea beverage, Haipao, and their interactions during Haipao fermentation. Food Microbiology, 13(6), 407-415. doi:10.1006/fmic.1996.0047
Lin, Y. C., Wey, Y. C., Lee, M. L., & Lin, P. C. (2015). U.S. Patent No. US20150216784A1. Washington, DC: U.S. Patent and Trademark Office.
Malbaša, R., Lončar, E., Djurić, M., & Došenović, I. (2007). Effect of sucrose concentration on the products of Kombucha fermentation on molasses. Food Chemistry, 108(3), 926-932. doi:10.1016/j.foodchem.2007.11.069 Mühlethaler, K. (1949). The structure of bacterial cellulose. Biochimica et Biophysica Acta, 3, 527-535
Naritomi, T., Kouda, T., Yano, H., & Yoshinaga, F. (1998). Effect of ethanol on bacterial cellulose production from fructose in continuous culture. Journal of Fermentation and Bioengineering, 85(6), 598-603. doi:10.1016/s0922-338x(98)80012-3
Premjet, S., Premjet, D., & Ohtani, Y. (2007). The Effect of ingredients of sugar cane molasses on bacterial cellulose production by Acetobacter xylinum ATCC 10245. Fiber, 63(8), 193-199. doi:10.2115/fiber.63.193
Rahman, Gomaa, N. A., Nassar, Nadia, R. A., Heikal, Yehia, A., Donia, Mohmoud, A. M. A., Naguib, Mohamed, M., & Fadel, M. (2016). Effect of different treatments on heavy metal concentration in sugar cane molasses. International Journal of Agricultural and Biosystems Engineering, 10(1), 43–48.
Roussin, M., R. (1996). Analyses of Kombucha ferments: Report on growers. Information Resources, LC, Salt Lake City, Utah, USA. Retrieved on 31 Jan, 2021, from http://www.Kombucha-research.com Saxena, I. M., & Brown Jr, R. M. (2005). Cellulose biosynthesis: current views and evolving concepts. Annals of Botany, 96(1), 9-21.
Serafica, G., Mormino, R., Oster, G. A., Lentz, K. E., & Koehler, K. P. (2012). U.S. Patent No. US7704523B2. Washington, DC: U.S. Patent and Trademark Office.
Sievers, M., Lanini, C., Weber, A., Schuler-Schmid, U., Teuber, M. (1995). Microbiology and fermentation balance in a Kombucha beverage obtained from a tea fungus fermentation. Syst Appl Microbiol 18, 590–4.
Stephens, R. S., Westland, J. A., & Neorgi, A. N. (1990). U.S. Patent No. US4960763A. Washington, DC: U.S. Patent and Trademark Office.
Teoh, A. L., Heard, G., & Cox, J. (2004). Yeast ecology of Kombucha fermentation. International Journal of Food Microbiology, 95(2), 119–126. doi:10.1016/j.ijfoodmicro.2003.12.020
Tsouko, E., Kourmentza, C., Ladakis, D., Kopsahelis, N., Mandala, I., Papanikolaou, S., Paloukis, F., Alves, V., & Koutinas, A. (2015). Bacterial Cellulose Production from Industrial Waste and by-Product Streams. International Journal of Molecular Sciences, 16(12), 14832–14849. doi:10.3390/ijms160714832
Tyagi, N., & Suresh, S. (2016). Production of cellulose from sugarcane molasses using Gluconacetobacter intermedius SNT-1: Optimization & characterization. Journal of Cleaner Production,112, 71-80. doi:10.1016/j.jclepro.2015.07.054
Ullah, H., Santos, H. A., & Khan, T. (2016). Applications of bacterial cellulose in food, cosmetics and drug delivery. Cellulose, 23(4), 2291-2314. doi:10.1007/s10570-016-0986-y Valla, S., Coucheron, D. H., Fjærvik, E., Kjosbakken, J., Weinhouse, H., Ross, P., ... & Benziman, M. (1989). Cloning of a gene involved in cellulose biosynthesis in Acetobacter xylinum: complementation of cellulose-negative mutants by the UDPG pyrophosphorylase structural gene. Molecular and General Genetics MGG, 217(1), 26-30.
Villarreal-Soto, S. A., Beaufort, S., Bouajila, J., Souchard, J., & Taillandier, P. (2018). Understanding Kombucha tea fermentation: a review. Journal of Food Science, 83(3), 580-588. doi:10.1111/1750-3841.14068
Wanichapichart, P., Kaewnopparat, S., Buaking, K., Puthai, W. (2002). Characterization of cellulose membranes produced by Acetobacter xylinum. J. Sci. Technol., 24, 855–862 Yamada, Y., Yukphan, P., Vu, H. T. L., Muramatsu, Y., Ochaikul, D., Tanasupawat, S., & Nakagawa, Y. (2012). Description of Komagataeibacter gen. nov., with proposals of new combinations (Acetobacteraceae). The Journal of General and Applied Microbiology, 58(5), 397-404.
Published
2021-09-30
How to Cite
Angela, C., & Devanthi, P. (2021). A Review on Bacterial Cellulose: Properties, Applications, Fermentative Production, and Molasses Potential as Alternative Medium. Indonesian Journal of Life Sciences, 3(1), 26-36. https://doi.org/https://doi.org/10.54250/ijls.v3i1.124
Section
Indonesian Journal of Life Sciences