Recent Advancements of Fungal Xylanase Upstream Production and Downstream Processing

  • Jonathan J Student Indonesia International Institute for Life Sciences
  • Veren Tania Student Indonesia International Institute for Life Sciences
  • Jessica C. Tanjaya Student Indonesia International Institute for Life Sciences
  • Katherine K Indonesia International Institute for Life Sciences
Keywords: Fungal xylanase, upstream, downstream, formulation, bioprocess

Abstract

Xylanase is a hydrolytic enzyme produced by fungi and bacteria utilized in various industrial applications such as food, biobleaching, animal feed, and pharmaceuticals. Due to its wide variety of applications, xylanase's large-scale industrial production has gained researchers' interest. Many factors and methods affect fungal xylanase's production in both upstream and downstream processing stages. The upstream production methods used are submerged fermentation (SmF) and solid-state fermentation (SSF), where SmF involves the usage of liquid substrates, while the SSF applies solid substrates to inoculate the microbes. The downstream processing of fungal xylanase includes extraction, purification, and formulation. The extraction methods used to extract fungal xylanase are filtration and solvent extraction. Meanwhile, the purification methods include ultrafiltration, precipitation, chromatography, Aqueous Two-Phase System (ATPS), and Aqueous Two-Phase Affinity Partitioning (ATPAP). The formulation of xylanase product is obtained in either liquid from the extraction-purification results, which can be converted to powder form using technologies such as spray drying to increase storage life. Moreover, immobilization of xylanase with nanoparticles of SiO2 could produce reusable xylanase enzymes. Several future studies have also been suggested. This review aims to explain the upstream and downstream processes of fungal xylanase production as well as the factors that affect those processes.

Downloads

Download data is not yet available.

Author Biographies

Jonathan J, Student Indonesia International Institute for Life Sciences

Biotechnology Department, Indonesia International Institute for Life Sciences, Jakarta, Indonesia

Veren Tania, Student Indonesia International Institute for Life Sciences

Biotechnology Department, Indonesia International Institute for Life Sciences, Jakarta, Indonesia

Jessica C. Tanjaya, Student Indonesia International Institute for Life Sciences

Biotechnology Department, Indonesia International Institute for Life Sciences, Jakarta, Indonesia

Katherine K, Indonesia International Institute for Life Sciences

Biotechnology Department, Indonesia International Institute for Life Sciences, Jakarta, Indonesia

References

Aachary, A. A., & Prapulla, S. G. (2011). Xylooligosaccharides (XOS) as an Emerging Prebiotic: Microbial Synthesis, Utilization, Structural Characterization, Bioactive Properties, and Applications. Comprehensive Reviews in Food Science and Food Safety, 10(1), 2–16. doi:10.1111/j.1541-4337.2010.00135.x
Abdella, A., Segato, F., & Wilkins, M. R. (2020). Optimization of process parameters and fermentation strategy for xylanase production in a stirred tank reactor using a mutant Aspergillus nidulans strain. Biotechnology Reports, 26(April), e00457. doi:10.1016/j.btre.2020.e00457
Adhyaru, D. N., Bhatt, N. S., & Modi, H. A. (2015). Optimization of upstream and downstream process parameters for cellulase-poor-thermo-solvent-stable xylanase production and extraction by Aspergillus tubingensis FDHN1. Bioresources and Bioprocessing, 2(1), 1–14. doi:10.1186/s40643-014-0029-1
Adhyaru, D. N., Bhatt, N. S., Modi, H. A., & Divecha, J. (2016). Insight on xylanase from Aspergillus tubingensis FDHN1: Production, high yielding recovery optimization through statistical approach and application. Biocatalysis and Agricultural Biotechnology, 6, 51–57. doi:10.1016/j.bcab.2016.01.014
Adigüzel, A. O., & Tunçer, M. (2016). Production, Characterization and Application of a Xylanase from Streptomyces sp. AOA40 in Fruit Juice and Bakery Industries. Food Biotechnology, 30(3), 189–218. doi:10.1080/08905436.2016.1199383
Ahmad, Z., Butt, M. S., Ahmed, A., Riaz, M., Sabir, S. M., Farooq, U., & Rehman, F. U. (2014). Effect of Aspergillus niger xylanase on dough characteristics and bread quality attributes. Journal of Food Science and Technology, 51(10), 2445–2453. doi:10.1007/s13197-012-0734-8
Ajijolakewu, A. K., Leh, C. P., Wan Abdullah, W. N., & Lee, C. keong. (2017). Optimization of production conditions for xylanase production by newly isolated strain Aspergillus niger through solid state fermentation of oil palm empty fruit bunches. Biocatalysis and Agricultural Biotechnology, 11, 239–247. doi:10.1016/j.bcab.2017.07.009
Austin, R. (2018). Enzyme Immobilization. ED-Tech Press.
Bakri, Y., Mekaeel, A., & Koreih, A. (2011). Influence of Agitation Speeds and Aeration Rates on the Xylanase Activity of Aspergillus niger SS7. Brazilian Archives of Biology and Technology, 54(August), 659–664. doi:10.1590/s1516-89132011000400003
Bandikari, R., Poondla, V., & Obulam, V. S. R. (2014). Enhanced production of xylanase by solid state fermentation using Trichoderma koeningi isolate: effect of pretreated agro-residues. 3 Biotech, 4(6), 655–664. doi:10.1007/s13205-014-0239-4
Benassi, V. M., de Lucas, R. C., Jorge, J. A., &
Polizeli, M. de L. T. de M. (2014). Screening of thermotolerant and thermophilic fungi aiming β-xylosidase and arabinanase production. Brazilian Journal of Microbiology, 45(4), 1459–1467. doi:10.1590/S1517-83822014000400042
Bhardwaj, N., Kumar, B., Agarwal, K., Chaturvedi, V., & Verma, P. (2019). Purification and characterization of a thermo-acid/alkali stable xylanases from Aspergillus oryzae LC1 and its application in Xylo-oligosaccharides production from lignocellulosic agricultural wastes. International Journal of Biological Macromolecules, 122, 1191–1202. doi:10.1016/j.ijbiomac.2018.09.070
Bhardwaj, N., Kumar, B., & Verma, P. (2019). A detailed overview of xylanases: an emerging biomolecule for current and future prospective. Bioresources and Bioprocessing, 6(1). doi:10.1186/s40643-019-0276-2
Bhardwaj, N., & Verma, P. (2020). Extraction of Fungal Xylanase Using ATPS-PEG/Sulphate and Its Application in Hydrolysis of Agricultural Residues. In Biotechnological Applications in Human Health (pp. 95–105). Springer Singapore. doi:10.1007/978-981-15-3453-9_11
Bose, D., & Gangopadhyay, H. (2013). Effect of carbohydrates and amino acids on fermentative production of alpha amylase: Solid state fermentation utilizing agricultural wastes.
Castro, A. M., Castilho, L. R., & Freire, D. M. G. (2015). Performance of a fixed-bed solid-state fermentation bioreactor with forced aeration for the production of hydrolases by Aspergillus awamori. Biochemical Engineering Journal, 93, 303–308. doi:10.1016/j.bej.2014.10.016
Cayetano-Cruz, M., Pérez de los Santos, A. I., García-Huante, Y., Santiago-Hernández, A., Pavón-Orozco, P., López y López, V. E., & Hidalgo-Lara, M. E. (2016). High level expression of a recombinant xylanase by Pichia pastoris cultured in a bioreactor with methanol as the sole carbon source: Purification and biochemical characterization of the enzyme. Biochemical Engineering Journal, 112, 161–169. doi:10.1016/j.bej.2016.04.014
Chen, Q., Li, M., & Wang, X. (2016). Enzymology properties of two different xylanases and their impacts on growth performance and intestinal microflora of weaned piglets. Animal Nutrition, 2(1), 18–23. doi:10.1016/j.aninu.2016.02.003
Costa, M. A. L., Farinas, C. S., & Miranda, E. A. (2018). Ethanol precipitation as a downstream processing step for concentration of xylanases produced by submerged and solid-state fermentation. Brazilian Journal of Chemical Engineering, 35(2), 477–488. doi:10.1590/0104-6632.20180352s20160502
Dhillon, G. S., Oberoi, H. S., Kaur, S., Bansal, S., & Brar, S. K. (2011). Value-addition of agricultural wastes for augmented cellulase and xylanase production through solid-state tray fermentation employing mixed-culture of fungi. Industrial Crops and Products, 34(1), 1160–1167. doi:10.1016/j.indcrop.2011.04.001
Dhiman, S. S., Jagtap, S. S., Jeya, M., Haw, J. R., Kang, Y. C., & Lee, J. K. (2012). Immobilization of Pholiota adiposa xylanase onto SiO 2 nanoparticles and its application for production of xylooligosaccharides. Biotechnology Letters, 34(7), 1307–1313. doi:10.1007/s10529-012-0902-y
Dhiman, S. S., Kalyani, D., Jagtap, S. S., Haw, J. R., Kang, Y. C., & Lee, J. K. (2013). Characterization of a novel xylanase from Armillaria gemina and its immobilization onto SiO2 nanoparticles. Applied Microbiology and Biotechnology, 97(3), 1081–1091. doi:10.1007/s00253-012-4381-9
Ding, C., Li, M., & Hu, Y. (2018). High-activity production of xylanase by Pichia stipitis: Purification, characterization, kinetic evaluation and xylooligosaccharides production. In International Journal of Biological Macromolecules (Vol. 117). Elsevier B.V. doi:10.1016/j.ijbiomac.2018.05.128
El-Sherbiny, M., & El-Chaghaby, G. (2012). Storage temperature and stabilizers in relation to the activity of commercial liquid feed enzymes: a case study from Egypt. Journal of Agrobiology, 28(2), 129–137. doi:10.2478/v10146-011-0014-7
Fakhari, M. A., Rahimpour, F., & Taran, M. (2017). Response surface methodology optimization of partitioning of xylanase form Aspergillus Niger by metal affinity polymer-salt aqueous two-phase systems. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 1063, 1–10. doi:10.1016/j.jchromb.2017.08.007
Farinas, C. S., Vitcosque, G. L., Fonseca, R. F., Neto, V. B., & Couri, S. (2011). Modeling the effects of solid state fermentation operating conditions on endoglucanase production using an instrumented bioreactor. Industrial Crops and Products, 34(1), 1186–1192. doi:10.1016/j.indcrop.2011.04.006
Gangwar, A. K., Prakash, N. T., & Prakash, R. (2014). Applicability of Microbial Xylanases in Paper Pulp Bleaching: A Review. BioResources, 9(2), 3733–3754. doi:10.15376/biores.9.2.3733-3754
Garai, D., & Kumar, V. (2013). Aqueous two phase extraction of alkaline fungal xylanase in PEG/phosphate system: Optimization by Box-Behnken design approach. Biocatalysis and Agricultural Biotechnology, 2(2), 125–131. doi:10.1016/j.bcab.2013.03.003
Ghoshal, G., Banerjee, U. C., & Shivhare, U. S. (2014). Xylanase production by Penicillium citrinum in laboratory-scale stirred tank reactor. Chemical and Biochemical Engineering Quarterly, 28(3), 399–408. doi:10.15255/CABEQ.2013.1885
Ghoshal, G., Banerjee, U. C., & Shivhare, U. S. (2016). Utilization of Agrowaste And Xylanase Production in Solid State Fermentation. Journal of Biochemical Technology, 6(3), 1013–1024.
Guimaraes, N. C. de A., Sorgatto, M., Peixoto-Nogueira, S. de C., Betini, J. H. A., Zanoelo, F. F., Marques, M. R., Polizeli, M. de L. T. de M., & Giannesi, G. C. (2013). Bioprocess and biotechnology: Effect of xylanase from Aspergillus niger and Aspergillus flavus on pulp biobleaching and enzyme production using agroindustrial residues as substract. SpringerPlus, 2(1), 1–7. doi:10.1186/2193-1801-2-380
Gupta, G., Sahai, V., Mishra, S., & Gupta, R. K. (2014). Spray-drying of xylanase from thermophilic fungus melanocarpus albomyces- Effect of carriers and binders on enzyme stability. Indian Journal of Chemical Technology, 21(2), 89–95.
Hägglund, T. (2012). Signal filtering in PID control. IFAC Proceedings Volumes (IFAC-PapersOnline), 2(PART 1), 1–10. doi:10.3182/20120328-3-it-3014.00002
Ho, H., & Iylia, Z. (2015). Optimised Production of Xylanase by Aspergillus brasiliensis under Submerged Fermentation (SmF) and Its Purification Using a Two-step Column Chromatography. Journal of Advances in Biology & Biotechnology, 4(3), 1–22. doi:10.9734/jabb/2015/18129
Homaei, A. A., Sariri, R., Vianello, F., & Stevanato, R. (2013). Enzyme immobilization: An update. Journal of Chemical Biology, 6(4), 185–205. doi:10.1007/s12154-013-0102-9
Huang, S., Vignolles, M. L., Chen, X. D., Le Loir, Y., Jan, G., Schuck, P., & Jeantet, R. (2017). Spray drying of probiotics and other food-grade bacteria: A review. Trends in Food Science and Technology, 63, 1–17. doi:10.1016/j.tifs.2017.02.007
Imtiaz, U., Jamuara, S. S., & Sahu, J. N. (2013). Optimization of bioreactor profile control. International Conference on Control, Automation and Systems, 1741–1746. doi:10.1109/ICCAS.2013.6704218
Khanahmadi, M., Arezi, I., Amiri, M. sadat, & Miranzadeh, M. (2018). Bioprocessing of agro-industrial residues for optimization of xylanase production by solid- state fermentation in flask and tray bioreactor. Biocatalysis and Agricultural Biotechnology, 13, 272–282. doi:10.1016/j.bcab.2018.01.005
Kocabaş, D. S., Güder, S., & Özben, N. (2015). Purification strategies and properties of a low-molecular weight xylanase and its application in agricultural waste biomass hydrolysis. Journal of Molecular Catalysis B: Enzymatic, 115, 66–75. doi:10.1016/j.molcatb.2015.01.012
Labrou, N. E. (2014). Protein Purification: An Overview. In Nikolaos E. Labrou (Ed.), Protein Downstream Processing. Methods in Molecular Biology (Methods and Protocols), vol 1129 (pp. 3–10). Humana Press. doi:10.1007/978-1-62703-977-2_1
Lee, C. H. (2017). A simple outline of methods for protein isolation and purification. Endocrinology and Metabolism, 32(1), 18–22. doi:10.3803/EnM.2017.32.1.18
Liu, F., Xue, Y., Liu, J., Gan, L., & Long, M. (2019). ACE3 as a master transcriptional factor regulates cellulase and xylanase production in Trichoderma orientalis EU7-22. BioResources, 13(3), 6790–6801. doi:10.15376/biores.13.3.6790-6801
Łojewska, E., Kowalczyk, T., Olejniczak, S., & Sakowicz, T. (2016). Extraction and purification methods in downstream processing of plant-based recombinant proteins. Protein Expression and Purification, 120, 110–117. doi:10.1016/j.pep.2015.12.018
Manan, M. A., & Webb, C. (2017). Design Aspects of Solid State Fermentation as Applied to Microbial Bioprocessing. Journal of Applied Biotechnology & Bioengineering, 4(1), 511–532. doi:10.15406/jabb.2017.04.00094
Manan, M. A., & Webb, C. (2018). Estimation of growth in solid state fermentation: A review. Malaysian Journal of Microbiology, March. doi:10.21161/mjm.96616
Motta, F. l., Andrade, C. C. P., & Santana, M. H. A. (2013). A Review of Xylanase Production by the Fermentation of Xylan: Classification, Characterization and Applications. In A. K. Chandel & S. S. da Silva (Eds.), Sustainable Degradation Of Lignocellulosic Biomass - Techniques, Applications And Commercialization. InTech.
Murthy, P. S., & Naidu, M. M. (2012). Production and Application of Xylanase from Penicillium sp. Utilizing Coffee By-products. Food and Bioprocess Technology, 5(2), 657–664. doi:10.1007/s11947-010-0331-7
Ncube, T., Howard, R. L., Abotsi, E. K., van Rensburg, E. L. J., & Ncube, I. (2012). Jatropha curcas seed cake as substrate for production of xylanase and cellulase by Aspergillus niger FGSCA733 in solid-state fermentation. Industrial Crops and Products, 37(1), 118–123. doi:10.1016/j.indcrop.2011.11.024
Pal, A., & Khanum, F. (2010). Production and extraction optimization of xylanase from Aspergillus niger DFR-5 through solid-state-fermentation. Bioresource Technology, 101(19), 7563–7569. doi:10.1016/j.biortech.2010.04.033
Pandya, J. J., & Gupte, A. (2012). Production of xylanase under solid-state fermentation by Aspergillus tubingensis JP-1 and its application. Bioprocess and Biosystems Engineering, 35(5), 769–779. doi:10.1007/s00449-011-0657-1
Pirota, R. D. P. B., Tonelotto, M., Delabona, P. da S., Fonseca, R. F., Paixão, D. A. A., Baleeiro, F. C. F., Bertucci Neto, V., & Farinas, C. S. (2013). Enhancing xylanases production by a new Amazon Forest strain of Aspergillus oryzae using solid-state fermentation under controlled operation conditions. Industrial Crops and Products, 45, 465–471. doi:10.1016/j.indcrop.2013.01.010
Podestá, M. V., Morilla, E. A., Allasia, M. B., Woitovich Valetti, N., Tubio, G., & Boggione, M. J. (2019). An Eco-friendly Method of Purification for Xylanase from Aspergillus niger by Polyelectrolyte Precipitation. Journal of Polymers and the Environment, 27(12), 2895–2905. doi:10.1007/s10924-019-01571-3
Raveendran, S., Parameswaran, B., Ummalyma, S. B., Abraham, A., Mathew, A. K., Madhavan, A., Rebello, S., & Pandey, A. (2018). Applications of microbial enzymes in food industry. Food Technology and Biotechnology, 56(1), 16–30. doi:10.17113/ftb.56.01.18.5491
Ravichandran, S., & R, V. (2012). Solid State and Submerged Fermentation for the Production of Bioactive Substances : a Comparative Study. 3(3), 480–486.
Santos, D., Maurício, A. C., Sencadas, V., Santos, J. D., Fernandes, M. H., & Gomes, P. S. (2018). Spray Drying: An Overview. In Biomaterials - Physics and Chemistry - New Edition. InTech. doi:10.5772/intechopen.72247
Singh, R. (2015). Introduction to Membrane Technology. In Membrane Technology and Engineering for Water Purification (2nd ed., pp. 1–80). Butterworth-Heinemann. doi:10.1016/b978-0-444-63362-0.00001-x
Singhania, R. R., Patel, A. K., Thomas, L., Goswami, M., Giri, B. S., & Pandey, A. (2015). Industrial Enzymes. In Industrial Biorefineries and White Biotechnology (pp. 473–497). Elsevier. doi:10.1016/B978-0-444-63453-5.00015-X
Stanbury, P. F., Whitaker, A., & Hall, S. J. (2016). Principles of Fermentation Technology. In Principles of Fermentation Technology (3rd ed.). Butterworth-Heinemann. doi:10.1016/c2013-0-00186-7
Steudler, S., Werner, A., & Walther, T. (2019). It Is the Mix that Matters: Substrate-Specific Enzyme Production from Filamentous Fungi and Bacteria Through Solid-State Fermentation. In S. Steudler, A. Werner, & J. Cheng (Eds.), Advances in Biochemical Engineering/Biotechnology (Vol. 169, pp. 51–81). Springer, Cham. doi:10.1007/10_2019_85
Sutton, M., & Barr, S. (2018). Food Biotechnology. ED-Tech Press.
Teixeira, R. S. S., Siqueira, F. G., De Souza, M. V., Filho, E. X. F., & Da Silva Bon, E. P. (2010). Purification and characterization studies of a thermostable β-xylanase from Aspergillus awamori. Journal of Industrial Microbiology and Biotechnology, 37(10), 1041–1051. doi:10.1007/s10295-010-0751-4
Umsza-Guez, M. A., Díaz, A. B., Ory, I. D., Blandino, A., Gomes, E., & Caro, I. (2011). Xylanase production by Aspergillus awamori under solid state fermentation conditions on tomato pomace. Brazilian Journal of Microbiology, 42(4), 1585–1597. doi:10.1590/S1517-83822011000400046
Wingfield, P. (2001). Protein Precipitation Using Ammonium Sulfate. In Current Protocols in Protein Science (p. A.3F.1-A.3F.8). John Wiley & Sons, Inc. doi:10.1002/0471140864.psa03fs13
Zhang, C., & Xing, X. H. (2011). Enzyme Bioreactors. In Comprehensive Biotechnology, Second Edition (Vol. 2, pp. 319–329). Elsevier Inc. doi:10.1016/B978-0-08-088504-9.00099-4
Zhang, L., Xu, J., Lei, L., Jiang, Y., Gao, F., & Zhou, G. H. (2014). Effects of xylanase supplementation on growth performance, nutrient digestibility and non-starch polysaccharide degradation in different sections of the gastrointestinal tract of broilers fed wheat-Based diets. Asian-Australasian Journal of Animal Sciences, 27(6), 855–861. doi:10.5713/ajas.2014.14006
Published
2021-09-30
How to Cite
J, J., Tania, V., Tanjaya, J., & K, K. (2021). Recent Advancements of Fungal Xylanase Upstream Production and Downstream Processing. Indonesian Journal of Life Sciences, 3(1), 37-58. https://doi.org/https://doi.org/10.54250/ijls.v3i1.122
Section
Indonesian Journal of Life Sciences