Development of Long QT Syndrome Detection Using SciPy
Abstract
Long QT syndrome (LQTS) is a type of arrhythmia that manifests itself as the elongation of the QT interval. LQTS is caused due to different disorders in the sodium and potassium channels which results in reduced activity of the cardiac muscle. To diagnose LQTS, an algorithm is used to detect the elongated QT interval through detection of the peaks using Python. The current build of the algorithm is able to detect different ECG graphs for their QT interval with relative accuracy however is not capable of detecting the different components if the graph has too much noise or if they have irregular wavelengths due to other cardiovascular disease (CVD).
Downloads
References
About PhysioNet. (n.d.). PhysioNet. Retrieved July 22, 2022, from https://archive.physionet.org/about.shtml
Ashley, E., & Niebauer, J. (2003). Cardiology Explained (Remedica Explained) (1st ed.). Remedica Publishing.
Beers, L., van Adrichem, L. P., Himmelreich, J. C. L., Karregat, E. P. M., de Jong, J. S. S. G., Postema, P. G., de Groot, J. R., Lucassen, W. A. M., & Harskamp, R. E. (2021). Manual QT interval measurement with a smartphone-operated single-lead ECG versus 12-lead ECG: a within-patient diagnostic validation study in primary care. BMJ Open, 11(11), e055072. https://doi.org/10.1136/bmjopen-2021-055072
Bellenir, K. (2000). Heart Diseases and Disorders Sourcebook: Basic Consumer Health Information About Heart Attacks, Angina, Rhythm Disorders, Heart Failure, Valve Disorders, and More (Health Reference Series) (2nd ed.). Omnigraphics Inc
.
Cardiovascular diseases. (2019, June 11). Https://Www.Who.Int/Health-Topics/Cardiovascular-Diseases#tab=tab_1. https://www.who.int/health-topics/cardiovascular-diseases#tab=tab_1
EMAy Portable ECG. (n.d.). Tokopedia. https://www.tokopedia.com/healthusa/emay-portable-ecg-monitor-wireless-ekg-monitoring-devices
Feather, A., Randall, D., & Waterhouse, M. (2020). Kumar and Clark’s Clinical Medicine E-Book (10th ed.). Elsevier.
Goldenberg, I., Zareba, W., & Moss, A. J. (2008). Long QT Syndrome. Current Problems in Cardiology, 33(11), 629–694. https://doi.org/10.1016/j.cpcardiol.2008.07.002
Llobera, M. (2001). Building Past Landscape Perception With GIS: Understanding Topographic Prominence. Journal of Archaeological Science, 28(9), 1005–1014. https://doi.org/10.1006/jasc.2001.0720
Nakano, Y., & Shimizu, W. (2015). Genetics of long-QT syndrome. Journal of Human Genetics, 61(1), 51–55. https://doi.org/10.1038/jhg.2015.74
Obeyesekere, M. N., Leong-Sit, P., Massel, D., Manlucu, J., Modi, S., Krahn, A. D., Skanes, A. C., Yee, R., Gula, L. J., & Klein, G. J. (2012). Risk of Arrhythmia and Sudden Death in Patients With Asymptomatic Preexcitation. Circulation, 125(19), 2308–2315. https://doi.org/10.1161/circulationaha.111.055350
Pearman, C. (2018, October 6). QT Interval [Graph]. https://commons.m.wikimedia.org/wiki/File:QT_interval.jpg#mw-jump-to-license
Sarang. (2018, April 13). ECG graph [Vector image]. Wikipedia. https://commons.m.wikimedia.org/wiki/File:QRS_normal.svg#mw-jump-to-license
Tiwari, A. K. (2021). Automatic Detection of Q-T interval in ECG using MATLAB Tool. Automatic Detection of Q-T Interval in ECG Using MATLAB Tool. https://doi.org/10.21203/rs.3.rs-970625/v1
Topol, E., Clinic, C., & Eisner, M. D. (2000). Cleveland Clinic Heart Book: The Definitive Guide for the Entire Family from the Nation’s Leading Heart Center (1st ed.). Hyperion.
Trappe, H. J. (2018). EKG-Befunde: Tipps und Tricks zur richtigen Diagnose. Herz, 43(2), 177–194. https://doi.org/10.1007/s00059-018-4684-4
Tse, G. (2016). Mechanisms of cardiac arrhythmias. Journal of Arrhythmia, 32(2), 75–81. https://doi.org/10.1016/j.joa.2015.11.003
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., . . . Vázquez-Baeza, Y. (2020). SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature Methods, 17(3), 261–272. https://doi.org/10.1038/s41592-019-0686-2
Waks, J. W., & Josephson, M. E. (2014). Mechanisms of Atrial Fibrillation – Reentry, Rotors and Reality. Arrhythmia & Electrophysiology Review, 3(2), 90. https://doi.org/10.15420/aer.2014.3.2.90
Woodrow, P. (1998). An introduction to the reading of electrocardiograms. British Journal of Nursing, 7(3), 135–142. https://doi.org/10.12968/bjon.1998.7.3.135
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Articles published in Indonesian Journal Life of Sciences are licensed under a Creative Commons Attribution-ShareAlike 4.0 International license. You are free to copy, transform, or redistribute articles for any lawful purpose in any medium, provided you give appropriate credit to the original author(s) and Indonesian Journal Life of Sciences, link to the license, indicate if changes were made, and redistribute any derivative work under the same license. Copyright on articles is retained by the respective author(s), without restrictions. A non-exclusive license is granted to Indonesian Journal Life of Sciences to publish the article and identify itself as its original publisher, along with the commercial right to include the article in a hardcopy issue for sale to libraries and individuals. By publishing in Indonesian Journal Life of Sciences, authors grant any third party the right to use their article to the extent provided by the Creative Commons Attribution-ShareAlike 4.0 International license.