Comparative Study Between Mixed Culture of Schizosaccharomyces Pombe with  Saccharomyces and Single Culture Saccharomyces on Wine End Product

A Systematic Review

  • Roselyn Mulyono Indonesia International Institute for Life Sciences
  • Veren Tania Indonesia International Institute for Life Sciences
  • Robert Heryson Indonesia International Institute for Life Sciences
  • Kenny Roy Felix Indonesia International Institute for Life Sciences
  • Nanda Risqia Ratnasari Indonesia International Institute for Life Sciences
Keywords: Mixed Culture Fermentation; Wine Quality; Saccharomyces cerevisiae; Schizosaccharomyces pombe

Abstract

Wine industry has always been searching for a way to improve the quality of its produce. Lately, the trends of using mixed culture of yeast to improve the wine qualities in the wine industry are increasing. The aim of this systematic review is to determine whether or not the mixed culture of Schizosaccharomyces pombe and Saccharomyces cerevisiae actually improves the quality of the wine. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were used to conduct the systematic review, and studies performed from 2010-2020 were collected from the databases of MDPI, ScienceDirect, Semantic Scholar, and PubMed. A total of 54 studies are systematically reviewed in this paper. Pure fermentation of S.cerevisiae produced generally acceptable wine qualities with desirable amounts of ethanol and acceptable amount of secondary metabolites, however in recent findings S.cerevisiae cannot naturally degrade malic acid, leading to a too sour-taste wine. Meanwhile, pure fermentation of S.pombe results in the high production of polysaccharide, pyranoanthocyanin, glycerol, pyruvic acid, urease; reduction of malic acid and gluconic acid, altogether considered as desirable traits in wine production. Mixed fermentation with S.cerevisiae and proper strain selection of S.pombe are the solutions for the suppressed production of acetic acid, acetaldehyde, and acetoin, which are the undesirable compounds highly produced by Schizosaccharomyces. The hypothesis is proven to be true as mixed fermentation of S.cerevisiae and S.pombe results in enhanced wine quality, especially contributed by the compounds produced from S.pombe fermentation.

Downloads

Download data is not yet available.

Author Biographies

Roselyn Mulyono, Indonesia International Institute for Life Sciences

Department of Biotechnology, Indonesia International Institute for Life-Sciences (i3L), Jakarta, Indonesia.

Veren Tania, Indonesia International Institute for Life Sciences

Department of Biotechnology, Indonesia International Institute for Life-Sciences (i3L), Jakarta, Indonesia.

Robert Heryson, Indonesia International Institute for Life Sciences

Department of Biotechnology, Indonesia International Institute for Life-Sciences (i3L), Jakarta, Indonesia.

Kenny Roy Felix, Indonesia International Institute for Life Sciences

Department of Biotechnology, Indonesia International Institute for Life-Sciences (i3L), Jakarta, Indonesia.

Nanda Risqia Ratnasari, Indonesia International Institute for Life Sciences

Department of Bioinformatics, Indonesia International Institute for Life-Sciences (i3L), Jakarta, Indonesia.

References

Arranz, S., Chiva-Blanch, G., Valderas-Martínez, P., Medina-Remón, A., Lamuela-Raventós, R. M., & Estruch, R. (2012). Wine, beer, alcohol and polyphenols on cardiovascular disease and cancer. Nutrients, 4(7), 759–781. https://doi.org/10.3390/nu4070759
Artero, A., Artero, A., Tarín, J. J., & Cano, A. (2015). The impact of moderate wine consumption on health. Maturitas, 80(1), 3–13. https://doi.org/10.1016/j.maturitas.2014.09.007
Azevedo, J., Brandão, E., Soares, S., Oliveira, J., Lopes, P., Mateus, N., & de Freitas, V. (2020). Polyphenolic Characterization of Nebbiolo Red Wines and Their Interaction with Salivary Proteins. Foods (Basel, Switzerland), 9(12). https://doi.org/10.3390/foods9121867
Bañuelos, M. A., Loira, I., Escott, C., del Fresno, J. M., Morata, A., Sanz, P., Otero, L., & Suárez-Lepe, J. A. (2016). Grape Processing by High Hydrostatic Pressure: Effect on Use of Non-Saccharomyces in Must Fermentation. Food and Bioprocess Technology, 9, 1769–1778.
Barbe, J. C., Pineau, B., & Ferreira, A. C. (2008). Instrumental and sensory approaches for the characterization of compounds responsible for wine aroma. Chemistry & biodiversity, 5(6), 1170–1183. https://doi.org/10.1002/cbdv.200890094
Barrajón, N., Capece, A., Arévalo-Villena, M., Briones, A., & Romano, P. (2011). Co-inoculation of different Saccharomyces cerevisiae strains and influence on volatile composition of wines. Food Microbiology, 28(5), 1080–1086. https://doi.org/https://doi.org/10.1016/j.fm.2011.02.016
Basso, R. F., Alcarde, A. R., & Portugal, C. B. (2016). Could non-Saccharomyces yeasts contribute on innovative brewing fermentations? Food Research International, 86, 112–120. https://doi.org/https://doi.org/10.1016/j.foodres.2016.06.002
Benito, Á., Calderón, F., & Benito, S. (2016). Combined Use of S. pombe and L. thermotolerans in winemaking. Beneficial Effects Determined Through the Study of Wines’ Analytical Characteristics. Molecules (Basel, Switzerland), 21(12). https://doi.org/10.3390/molecules21121744
Benito, A., Calderón, F., & Benito, S. (2016). New trends in Schizosaccharomyces use for winemaking. Grape and Wine Biotechnology, 1st ed.; Morata, A., Ed, 307-323. http://doi.org/10.5772/64807
Benito, Á., Calderón, F., & Benito, S. (2018a). Schizosaccharomyces pombe Biotechnological Applications in Winemaking. Methods in Molecular Biology (Clifton, N.J.), 1721, 217–226. https://doi.org/10.1007/978-1-4939-7546-4_19
Benito, Á., Calderón, F., & Benito, S. (2018b). Schizosaccharomyces pombe Isolation Protocol. Methods in Molecular Biology (Clifton, N.J.), 1721, 227–234. https://doi.org/10.1007/978-1-4939-7546-4_20
Benito, Á., Calderón, F., & Benito, S. (2019). Mixed alcoholic Fermentation of Schizosaccharomyces pombe and Lachancea thermotolerans and its influence on mannose-containing polysaccharides wine Composition. Amb Express, 9(1), 1-8. https://doi.org/10.1186/s13568-019-0738-0
Benito, Á., Calderon, F., Palomero, F., & Benito, S. (2015). Combine Use of Selected Schizosaccharomyces pombe and Lachancea thermotolerans Yeast Strains as an Alternative to the Traditional Malolactic Fermentation in Red Wine Production. Molecules, 20, 9510–9523.
Benito, Á., Jeffares, D., Palomero, F., Calderón, F., Bai, F.-Y., Bähler, J., & Benito, S. (2016). Selected Schizosaccharomyces pombe Strains Have Characteristics That Are Beneficial for Winemaking. PloS One, 11(3), e0151102. https://doi.org/10.1371/journal.pone.0151102
Benito, S., Gálvez, L., Palomero, F., Morata, A., Palmero, D., & Suarez-Lepe, J. A. (2013). Schizosaccharomyces selective differential media. African Journal of Microbiology Research, 7(24), 3026-3036. https://doi.org/10.5897/AJMR2013.5684
Benito, S., Palomero, F., Calderón, F., Palmero, D., & Suárez-Lepe, J. A. (2014). Selection of appropriate Schizosaccharomyces strains for winemaking. Food Microbiology, 42, 218–224. https://doi.org/10.1016/j.fm.2014.03.014
Benito, S., Palomero, F., Gálvez, L., Morata, A., Calderon, F., Palmero, D., & Suárez-Lepe, J. A. (2014). Quality and Composition of Red Wine Fermented with Schizosaccharomyces pombe as Sole Fermentative Yeast, and in Mixed and Sequential Fermentations with Saccharomyces cerevisiae. Food Technology and Biotechnology, 52, 376–382.
Benito, S., Palomero, F., Morata, A., Calderón, F., & Suárez‐Lepe, J. A. (2012). New applications for Schizosaccharomyces pombe in the alcoholic fermentation of red wines. International journal of food science & technology, 47(10), 2101-2108. https://doi.org/10.1111/j.1365-2621.2012.03076.x
Benito, S., Palomero, F., Morata, A., Calderón, F., Palmero, D., Suárez-Lepe, J. A., Sáez, S. B., Rodriguez, F., Barrado, A. M., Fernandez, F. C., Llamas, D. P., & Lepe, J. A. (2013). Physiological features of Schizosaccharomyces pombe of interest in the making of white wines. European Food Research and Technology, 236, 29–36.
Benito, S. (2019). The impacts of Schizosaccharomyces on winemaking. Applied Microbiology and Biotechnology, 103(11), 4291–4312. https://doi.org/10.1007/s00253-019-09827-7
Beulens, J. W. J., van der Schouw, Y. T., Bergmann, M. M., Rohrmann, S., Schulze, M. B., Buijsse, B., Grobbee, D. E., Arriola, L., Cauchi, S., Tormo, M.-J., Allen, N. E., van der A, D. L., Balkau, B., Boeing, H., Clavel-Chapelon, F., de Lauzon-Guillan, B., Franks, P., Froguel, P., Gonzales, C., … Wareham, N. J. (2012). Alcohol consumption and risk of type 2 diabetes in European men and women: influence of beverage type and body size The EPIC-InterAct study. Journal of Internal Medicine, 272(4), 358–370. https://doi.org/10.1111/j.1365-2796.2012.02532.x
Bloem, A., Bertrand, A., Lonvaud‐Funel, A., & De Revel, G. (2007). Vanillin production from simple phenols by wine‐associated lactic acid bacteria. Letters in Applied Microbiology, 44(1), 62-67. https://doi.org/10.1111/j.1472-765X.2006.02037.x
Callejon, R. M., Clavijo, A., Ortigueira, P., Troncoso, A. M., Paneque, P., & Morales, M. L. (2010). Volatile and sensory profile of organic red wines produced by different selected autochthonous and commercial Saccharomyces cerevisiae strains. Analytica Chimica Acta, 660(1), 68–75. https://doi.org/https://doi.org/10.1016/j.aca.2009.09.040
Camarasa, C., Sanchez, I., Brial, P., Bigey, F., & Dequin, S. (2011). Phenotypic landscape of Saccharomyces cerevisiae during wine fermentation: evidence for origin-dependent metabolic traits. PloS One, 6(9), e25147. https://doi.org/10.1371/journal.pone.0025147
Cavallini, G., Straniero, S., Donati, A., & Bergamini, E. (2016). Resveratrol Requires Red Wine Polyphenols for Optimum Antioxidant Activity. The Journal of Nutrition, Health & Aging, 20(5), 540–545. https://doi.org/10.1007/s12603-015-0611-z
Chang, G. R., Chen, P. L., Hou, P. H., & Mao, F. C. (2015). Resveratrol protects against diet-induced atherosclerosis by reducing low-density lipoprotein cholesterol and inhibiting inflammation in apolipoprotein E-deficient mice. Iranian journal of basic medical sciences, 18(11), 1063–1071.
Chiva-Blanch, G., Urpi-Sarda, M., Ros, E., Arranz, S., Valderas-Martínez, P., Casas, R., ... & Estruch, R. (2012). Dealcoholized red wine decreases systolic and diastolic blood pressure and increases plasma nitric oxide. Circulation research, 111(8), 1065-1068. https://doi.org/10.1161/CIRCRESAHA.112.275636
Ciani, M., Comitini, F., Mannazzu, I., & Domizio, P. (2010). Controlled mixed culture fermentation: a new perspective on the use of non-Saccharomyces yeasts in winemaking. FEMS Yeast Research, 10(2), 123–133. https://doi.org/10.1111/j.1567-1364.2009.00579.x
Cordente, A. G., Curtin, C. D., Varela, C., & Pretorius, I. S. (2012). Flavour-active wine yeasts. Applied Microbiology and Biotechnology, 96(3), 601-618. https://doi.org/10.1007/s00253-012-4370-z
Cullmann, M., Hilding, A., & Östenson, C.-G. (2012). Alcohol consumption and risk of pre-diabetes and type 2 diabetes development in a Swedish population. Diabetic Medicine: A Journal of the British Diabetic Association, 29(4), 441–452. https://doi.org/10.1111/j.1464-5491.2011.03450.x
Day, M. P., Schmidt, S. A., Smith, P. A., & Wilkes, E. N. (2015). Use and impact of oxygen during winemaking. Australian Journal of Grape and Wine Research, 21, 693-704. https://doi.org/10.1111/ajgw.12199
Divol, B., du Toit, M., & Duckitt, E. (2012). Surviving in the presence of sulphur dioxide: strategies developed by wine yeasts. Applied microbiology and biotechnology, 95(3), 601-613. https://doi.org/10.1007/s00253-012-4186-x
Durak-Dados, A., Michalski, M., & Osek, J. (2020). Histamine and other biogenic amines in food. Journal of Veterinary Research, 1(ahead-of-print). https://doi.org/10.2478/jvetres-2020-0029
Eldarov, M. A., Kishkovskaia, S. A., Tanaschuk, T. N., & Mardanov, A. V. (2016). Genomics and Biochemistry of Saccharomyces cerevisiae Wine Yeast Strains. Biochemistry. Biokhimiia, 81(13), 1650–1668. https://doi.org/10.1134/S0006297916130046
Esposito, F., Montuori, P., Schettino, M., Velotto, S., Stasi, T., Romano, R., & Cirillo, T. (2019). Level of Biogenic Amines in Red and White Wines, Dietary Exposure, and Histamine-Mediated Symptoms upon Wine Ingestion. Molecules, 24(19), 3629. https://doi.org/10.3390/molecules24193629
Fernández de Ullivarri, M., Mendoza, L. M., Raya, R. R. & Farías, M. E. (2011). Killer phenotype of indigenous yeasts isolated from Argentinian wine cellars and their potential starter cultures for winemaking. Biotechnol. Lett. 33, 2177-2183. https://doi.org/10.1007/s10529-011-0674-9
Ferrero-Del-Teso, S., Suárez, A., Jeffery, D. W., Ferreira, V., Fernández-Zurbano, P., & Sáenz-Navajas, M.-P. (2020). Sensory variability associated with anthocyanic and tannic fractions isolated from red wines. Food Research International (Ottawa, Ont.), 136, 109340. https://doi.org/10.1016/j.foodres.2020.109340
Fleet, G. H. (2011). Chapter 5 - Yeast Spoilage of Foods and Beverages. In C. P. Kurtzman, J. W. Fell, & T. Boekhout (Eds.), The Yeasts (Fifth Edition) (Fifth Edition, pp. 53–63). London: Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-444-52149-1.00005-7
Fresno, J. D., Morata, A., Loira, I., Bañuelos, M., Escott, C., Benito, S., Chamorro, C. G., & Suárez-Lepe, J. A. (2017). Use of non-Saccharomyces in single-culture, mixed and sequential fermentation to improve red wine quality. European Food Research and Technology, 243, 2175–2185.
García, M., Arroyo, T., Crespo, J., Cabellos, J. M., & Esteve-Zarzoso, B. (2017). Use of native non-Saccharomyces strain: A new strategy in DO “Vinos de Madrid” (Spain) wines elaboration. Eur. J. Food Sci. Technol, 5, 1-31.
García, M., Esteve-Zarzoso, B., Crespo, J., Cabellos, J. M., & Arroyo, T. (2017). Yeast Monitoring of Wine Mixed or Sequential Fermentations Made by Native Strains from D.O.@Vinos de Madrid Using Real-Time Quantitative PCR. Frontiers in Microbiology, 8.
García-Estévez, I., Alcalde-Eon, C., Puente, V., & Escribano-Bailón, M. T. (2017). Enological Tannin Effect on Red Wine Color and Pigment Composition and Relevance of the Yeast Fermentation Products. Molecules (Basel, Switzerland), 22(12). https://doi.org/10.3390/molecules22122046
Gepner, Y., Golan, R., Harman-Boehm, I., Henkin, Y., Schwarzfuchs, D., Shelef, I., Durst, R., Kovsan, J., Bolotin, A., Leitersdorf, E., Shpitzen, S., Balag, S., Shemesh, E., Witkow, S., Tangi-Rosental, O., Chassidim, Y., Liberty, I. F., Sarusi, B., Ben-Avraham, S., … Shai, I. (2015). Effects of Initiating Moderate Alcohol Intake on Cardiometabolic Risk in Adults With Type 2 Diabetes: A 2-Year Randomized, Controlled Trial. Annals of Internal Medicine, 163(8), 569–579. https://doi.org/10.7326/M14-1650
González-Barreiro, C., Rial-Otero, R., Cancho-Grande, B., & Simal-Gándara, J. (2015). Wine aroma compounds in grapes: a critical review. Critical Reviews in Food Science and Nutrition, 55(2), 202–218. https://doi.org/10.1080/10408398.2011.650336
Gonzalo-Diago, A., Dizy, M., & Fernández-Zurbano, P. (2014). Contribution of low molecular weight phenols to bitter taste and mouthfeel properties in red wines. Food Chemistry, 154, 187–198. https://doi.org/10.1016/j.foodchem.2013.12.096
Heras-Roger, J., Alonso-Alonso, O., Gallo-Montesdeoca, A., Díaz-Romero, C., & Darias-Martín, J. (2016). Influence of copigmentation and phenolic composition on wine color. Journal of Food Science and Technology, 53(6), 2540–2547. https://doi.org/10.1007/s13197-016-2210-3
Hornedo Ortega, R., Reyes González Centeno, M., Chira, K., Jourdes, M., & Teissedre, P. (2020). Phenolic Compounds of Grapes and Wines: Key Compounds and Implications in Sensory Perception [Online First]. IntechOpen. https://doi.org/10.5772/intechopen.93127
Jackowetz, J. N., Dierschke, S., & Mira de Orduña, R. (2011). Multifactorial analysis of acetaldehyde kinetics during alcoholic Fermentation by Saccharomyces cerevisiae. Food Research International, 44(1), 310–316. https://doi.org/https://doi.org/10.1016/j.foodres.2010.10.014
Johnson, E. A., & Echavarri-Erasun, C. (2011). Yeast Biotechnology. The Yeasts, 21–44. doi:10.1016/b978-0-444-52149-1.00003-3
Jolly, N. P., Varela, C., & Pretorius, I. S. (2014). Not your ordinary yeast: non-Saccharomyces yeasts in wine production uncovered. FEMS yeast research, 14(2), 215–237. https://doi.org/10.1111/1567-1364.12111
Jordão, A. M., Vilela, A., & Cosme, F. (2015). From Sugar of Grape to Alcohol of Wine: Sensorial Impact of Alcohol in Wine. Beverages, 1(4), 292–310. https://doi.org/10.3390/beverages1040292
Konakovsky, V., Focke, M., Hoffmann-Sommergruber, K., Schmid, R., Scheiner, O., Moser, P., Jarisch, R., & Hemmer, W. (2011). Levels of histamine and other biogenic amines in high-quality red wines. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 28(4), 408–416. https://doi.org/10.1080/19440049.2010.551421
Kulkarni, P., Loira, I., Morata, A., Tesfaye, W., González, M. C., & Suárez-Lepe, J. A. (2015). Use of non-Saccharomyces yeast strains coupled with ultrasound treatment as a novel technique to accelerate ageing on lees of red wines and its repercussion in sensorial parameters. LWT - Food Science and Technology, 64(2), 1255–1262. https://doi.org/https://doi.org/10.1016/j.lwt.2015.07.046
Ladero, V., Calles-Enriquez, M., Fernandez, M., & A. Alvarez, M. (2010). Toxicological Effects of Dietary Biogenic Amines. Current Nutrition & Food Science, 6(2), 145-156. https://doi.org/10.2174/157340110791233256
Lago, L. O., & Welke, J. E. (2019). Carbonyl compounds in wine: factors related to presence and toxic effects. Ciência Rural, 49(8), e20190349. https://dx.doi.org/10.1590/0103-8478cr20190349
Li, H., & Förstermann, U. (2012). Red wine and cardiovascular health. In Circulation research (Vol. 111, Issue 8, pp. 959–961). https://doi.org/10.1161/CIRCRESAHA.112.278705
Li, L., & Sun, B. (2019). Grape and wine polymeric polyphenols: Their importance in enology. Critical Reviews in Food Science and Nutrition, 59(4), 563–579. https://doi.org/10.1080/10408398.2017.1381071
Liu, P. T., Duan, C. Q., & Yan, G. L. (2019). Comparing the Effects of Different Unsaturated Fatty Acids on Fermentation Performance of Saccharomyces cerevisiae and Aroma Compounds during Red Wine Fermentation. Molecules (Basel, Switzerland), 24(3), 538. https://doi.org/10.3390/molecules24030538
Liu, S., Laaksonen, O., & Yang, B. (2019). Volatile composition of bilberry wines fermented with non-Saccharomyces and Saccharomyces yeasts in pure, sequential and simultaneous inoculations. Food Microbiology, 80, 25–39. https://doi.org/10.1016/j.fm.2018.12.015
Liu, S., Laaksonen, O., Kortesniemi, M., Kalpio, M., & Yang, B. (2018). Chemical composition of bilberry wine fermented with non-Saccharomyces yeasts (Torulaspora delbrueckii and Schizosaccharomyces pombe) and Saccharomyces cerevisiae in pure, sequential and mixed fermentations. Food Chemistry, 266, 262–274. https://doi.org/10.1016/j.foodchem.2018.06.003
Loira, I., Morata, A., Palomero, F., González, C., & Suárez-Lepe, J. A. (2018). Schizosaccharomyces pombe: A promising biotechnology for modulating wine composition. Fermentation, 4(3), 70. https://doi.org/10.3390/fermentation4030070
Lonvaud-Funel A. (1999). Lactic acid bacteria in the quality improvement and depreciation of wine. Antonie van Leeuwenhoek, 76(1-4), 317–331.
Ma, W., Guo, A., Zhang, Y., Wang, H., Liu, Y., & Li, H. (2014). A review on astringency and bitterness perception of tannins in wine. Trends In Food Science & Technology, 40(1), 6-19. https://doi.org/10.1016/j.tifs.2014.08.001
Marsit, S., & Dequin, S. (2015). Diversity and adaptive evolution of Saccharomyces wine yeast: a review. FEMS Yeast Research, 15(7). https://doi.org/10.1093/femsyr/fov067
Martuscelli, M., Arfelli, G., Manetta, A. C., & Suzzi, G. (2013). Biogenic amines content as a measure of the quality of wines of Abruzzo (Italy). Food Chemistry, 140(3), 590–597. https://doi.org/https://doi.org/10.1016/j.foodchem.2013.01.008
McRae, J., Teng, B., & Bindon, K. (2019). Factors Influencing Red Wine Color From the Grape to the Glass. Encyclopedia Of Food Chemistry, 97-106. https://doi.org/10.1016/b978-0-08-100596-5.21655-7
Mendoza, L. M., Fernández de Ullivarri, M., & Raya, R. R. (2018). Saccharomyces cerevisiae: A key yeast for the winemaking process. Available at https://www.researchgate.net/publication/325951809_Saccharomyces_cerevisiae_A_key_yeast_for_the_wine-making_process#:~:text=Saccharomyces%20cerevisiae%20is%20the%20most%20important%20yeast%20species%20involved%20in%20wine%20fermentation.&text=Killer%20strains%20are%20able%20to,common%20practice%20during%20wine%20production.
Mina, M., & Tsaltas, D. (2017). Contribution of Yeast in Wine Aroma and Flavour. Yeast - Industrial Applications. https://doi.org/10.5772/intechopen.70656
Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & PRISMA Group (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS medicine, 6(7), e1000097. https://doi.org/10.1371/journal.pmed.1000097
Mylona, A. E., Del Fresno, J. M., Palomero, F., Loira, I., Bañuelos, M. A., Morata, A., Calderón, F., Benito, S., & Suárez-Lepe, J. A. (2016). Use of Schizosaccharomyces strains for wine fermentation—Effect on the wine composition and food safety. International Journal of Food Microbiology, 232, 63–72. https://doi.org/https://doi.org/10.1016/j.ijfoodmicro.2016.05.023
Nel, A. (2018). Tannins and Anthocyanins: From Their Origin to Wine Analysis – A Review. South African Journal Of Enology & Viticulture, 39(1). https://doi.org/10.21548/39-1-1503
Padilla, B., Gil, J. V., & Manzanares, P. (2016). Past and Future of Non-Saccharomyces Yeasts: From Spoilage Microorganisms to Biotechnological Tools for Improving Wine Aroma Complexity. Frontiers in microbiology, 7, 411. https://doi.org/10.3389/fmicb.2016.00411
Peng, X. L., Qu, W., Wang, L. Z., Huang, B. Q., Ying, C. J., Sun, X. F., & Hao, L. P. (2014). Resveratrol ameliorates high glucose and high-fat/sucrose diet-induced vascular hyperpermeability involving Cav-1/eNOS regulation. PloS one, 9(11), e113716. https://doi.org/10.1371/journal.pone.0113716
Indonesian Journal of Life Sciences Vol. 04 | Number 1 | March 2022
75
Puértolas, E., López, N., Condón, S., Álvarez, I., & Raso, J. (2010). Potential applications of PEF to improve red wine quality. Trends in Food Science & Technology, 21(5), 247–255. https://doi.org/https://doi.org/10.1016/j.tifs.2010.02.002
Rasouli, B., Ahlbom, A., Andersson, T., Grill, V., Midthjell, K., Olsson, L., & Carlsson, S. (2012). Alcohol consumption is associated with reduced risk of Type 2 diabetes and autoimmune diabetes in adults: results from the Nord-Trøndelag health study. Diabetic Medicine, 30(1), 56-64. https://doi.org/10.1111/j.1464-5491.2012.03713.x
Robinson, J., (1994). The Oxford Companion to Wine. Oxford University Press, Oxford.
Roca-Domènech, G., Cordero-Otero, R., Rozès, N., Cléroux, M., Pernet, A., & Mira de Orduña, R. (2018). Metabolism of Schizosaccharomyces pombe under reduced osmotic stress conditions afforded by fed-batch alcoholic fermentation of white grape must. Food Research International, 113, 401–406. https://doi.org/https://doi.org/10.1016/j.foodres.2018.07.003
Romani, C., Domizio, P., Lencioni, L., Gobbi, M., Comitini, F., Ciani, M., & Mannazzu, I. (2010). Polysaccharides and glycerol production by non-Saccharomyces wine yeasts in mixed fermentation. Quad. Vitic. Enol. Univ. Torino, 31, 185-189.
Scacco, A., Oliva, D., Di Maio, S., Polizzotto, G., Genna, G., Tripodi, G., Lanza, C. M., & Verzera, A. (2012). Indigenous Saccharomyces cerevisiae strains and their influence on the quality of Cataratto, Inzolia and Grillo white wines. Food Research International, 46(1), 1–9. https://doi.org/https://doi.org/10.1016/j.foodres.2011.10.038
Scansani, S., Rauhut, D., Brezina, S., Semmler, H., & Benito, S. (2020). The Impact of Chitosan on the Chemical Composition of Wines Fermented with Schizosaccharomyces pombe and Saccharomyces cerevisiae. Foods (Basel, Switzerland), 9(10). https://doi.org/10.3390/foods9101423
Schini-Kerth, V. B., Auger, C., Etienne-Selloum, N., & Chataigneau, T. (2010). Polyphenol-induced endothelium-dependent relaxations role of NO and EDHF. Advances in pharmacology (San Diego, Calif.), 60, 133–175. https://doi.org/10.1016/B978-0-12-385061-4.00006-4
Shamseer, L., Moher, D., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., Shekelle, P., Stewart, L. A., & PRISMA-P Group (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ (Clinical research ed.), 350, g7647. https://doi.org/10.1136/bmj.g7647
Stewart, G. G. (2014). Saccharomyces | Saccharomyces cerevisiae. Encyclopedia of Food Microbiology, 309–315. doi: 10.1016/b978-0-12-384730-0.00292-5
Styger G, Prior B, Bauer FF. Wine flavor and aroma. J Ind Microbiol Biotechnol., 38(9):1145-59. doi: 10.1007/s10295-011-1018-4. Epub 2011 Jul 24. PMID: 21786136.
Szabo, J. (2013). Pairing food and wine for dummies. Hoboken, N.J.: Wiley.
Tika, I. N., Agustiana, I. G. A. T., & Puspaningrat, L. P. D. (2021). Effect of Storage and Ageing Time on Sensorial Quality and Composition of Wine Phenolic Compounds Improved with Saccharomyces Cerevisiae Local
Indonesian Journal of Life Sciences Vol. 04 | Number 1 | March 2022
76
Hybrid. In IOP Conference Series: Materials Science and Engineering (Vol. 1115, No. 1, p. 012071). IOP Publishing.
Udeh, H.O., Kgatla, T.E., & Jideani, A.I. (2014). Effect of Mineral Ion Addition on Yeast Performance during Very High Gravity Wort Fermentation. World Academy of Science, Engineering and Technology, International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering, 8, 1208-1216.
Varriano, J. (2011). Wine: A cultural history. Reaktion Books. Available at https://books.google.co.id/books?hl=en&lr=&id=EXGqibBMu2wC&oi=fnd&pg=PP1&dq=+Wine:+A+Cultural+History&ots=fdb0zZA9RE&sig=qFkkl6nSb9sFTs0gi-xwUTkPCog&redir_esc=y#v=onepage&q=Wine%3A%20A%20Cultural%20History&f=false
Vilela, A. (2017). Biological demalication and deacetification of musts and wines: Can wine yeasts make the wine taste better?. fermentation, 3(4), 51. https://doi.org/10.3390/fermentation3040051
Walker, G. M., & Walker, R. S. K. (2018). Chapter Three - Enhancing Yeast Alcoholic Fermentations. In G. M. Gadd & S. Sariaslani (Eds.), Advances in Applied Microbiology (Vol. 105, pp. 87–129). Academic Press. https://doi.org/https://doi.org/10.1016/bs.aambs.2018.05.003
Zulueta, A., Caretti, A., Signorelli, P., & Ghidoni, R. (2015). Resveratrol: A potential challenger against gastric cancer. World Journal of Gastroenterology, 21(37), 10636–10643. https://doi.org/10.3748/wjg.v21.i37.10636
Published
2022-03-31
How to Cite
Section
Indonesian Journal of Life Sciences