Computational Software for Assessing Allelic Droput

  • Jeremias Ivan Indonesia International Institute for Life Sciences
  • Arli Parikesit Indonesia International Institute for Life Sciences
Keywords: software, allele, dropout, forensic, profiling


Allelic dropout is a failed amplification of an allele which usually happens when the concentration of the DNA sample is low. As there is a missing genotype, the result of the DNA profiling will significantly be affected. One way to overcome this problem is by using computational software that considers the
dropout event within its algorithm. This review is aimed to discuss several software that have been created to serve this purpose. All of the listed software turn to implement Maximum Likelihood (LR) algorithm within their calculation; however, they use different parameters and variables. This review
showed that allelic dropout should not be evaluated alone; it correlates with other events in creating a low quality of DNA. Therefore, a comprehensive algorithm that consider all of the factors should be built to best estimates the allelic dropout rate within a data.


Download data is not yet available.

Author Biographies

Jeremias Ivan, Indonesia International Institute for Life Sciences

Departement of Bioinformatic, School of Science, Indonesia International Institute for Life Sciences, Jakarta, Indonesia

Arli Parikesit, Indonesia International Institute for Life Sciences

Head of Departement of Bioinformatic, School of Science, Indonesia International Institute for Life Sciences, Jakarta, Indonesia


Balding, D. (2013). Evaluation of mixed-source, low-template DNA profiles in forensic science. Proceedings Of The National Academy Of Sciences, 110(30), 12241-12246. doi: 10.1073/pnas.1219739110

Balding, D., & Buckleton, J. (2009). Interpreting low template DNA profiles. Forensic Science International: Genetics, 4(1), 1-10. doi: 10.1016/j.fsigen.2009.03.003

Bianchi, L., & Lio, P. (2006). Forensic DNA and bioinformatics. Briefings In Bioinformatics, 8(2), 117-128. doi: 10.1093/bib/bbm006

Broquet, T., & Petit, E. (2004). Quantifying genotyping errors in noninvasive population genetics. Molecular Ecology, 13(11), 3601-3608. doi: 10.1111/j.1365-294x.2004.02352.x

Dauber, E., et al. (2003). Mutation rates at 23 different short tandem repeat loci. International Congress Series, 1239, 565-567. doi: 10.1016/s0531-5131(02)00217-0

Fan, H., & Chu, J. (2007). A Brief Review of Short Tandem Repeat Mutation. Genomics, Proteomics & Bioinformatics, 5(1), 7-14. doi: 10.1016/s1672-0229(07)60009-6

GHR. (2018a). What is DNA?. [Online] Retrieved from [Accessed 12 May 2018].

GHR. (2018b). What are proteins and what do they do. [Online] Retrieved from [Accessed 12 May 2018].

Gill, P., Jeffreys, A., & Werrett, D. (1985). Forensic application of DNA ‘fingerprints’. Nature, 318(6046), 577-579. doi: 10.1038/318577a0

Good, I. (1979). Studies in the History of Probability and Statistics. XXXVII A. M. Turing's statistical work in World War II. Biometrika, 66(2), 393-396. doi: 10.1093/biomet/66.2.393

Inman, K., et al. (2015). Lab Retriever: a software tool for calculating likelihood ratios incorporating a probability of drop-out for forensic DNA profiles. BMC Bioinformatics, 16(1). doi: 10.1186/s12859-015-0740-8

Jamieson, A. (2016). Introduction to Forensic DNA Profiling - The Electropherogram (epg). Wiley Encyclopedia Of Forensic Science, 1-13. doi: 10.1002/9780470061589.fsa1139

Johnson, P., & Haydon, D. (2007). Maximum-Likelihood Estimation of Allelic Dropout and False Allele Error Rates From Microsatellite Genotypes in the Absence of Reference Data. Genetics, 175(2), 827-842. doi: 10.1534/genetics.106.064618

McCord, B., et al. (2011). An investigation of the effect of DNA degradation and inhibition on PCR amplification of single source and mixed forensic samples. NCJRS, NCJ 236692.

Nature. (2018). Introduction: What Is DNA?. [Online] Retrieved from [Accessed 12 May 2018].

Panneerchelvam, S & Norazmi, M. (2003). Forensic DNA Profiling and Database. Malays J Med Sci, 10(2), 20-26.

Roach, J., et al. (2010). Analysis of Genetic Inheritance in a Family Quartet by Whole-Genome Sequencing. Science, 328(5978), 636-639. doi: 10.1126/science.1186802

Stevens, A., et al. (2017). Allelic Dropout During Polymerase Chain Reaction due to G-Quadruplex Structures and DNA Methylation Is Widespread at Imprinted Human Loci. G3: Genes|Genomes|Genetics, 7(3), 1019-1025. doi: 10.1534/g3.116.038687

Taberlet, P., et al. (1996). Reliable genotyping of samples with very low DNA quantities using PCR. Nucleic Acids Research, 24(16), 3189-3194. doi: 10.1093/nar/24.16.3189

Tvedebrink, T., Eriksen, P., Mogensen, H., & Morling, N. (2009). Estimating the probability of allelic drop-out of STR alleles in forensic genetics. Forensic Science International: Genetics, 3(4), 222-226. doi: 10.1016/j.fsigen.2009.02.002

Van Nieuwerburgh, F., Goetghebeur, E., Vandewoestyne, M., & Deforce, D. (2008). Impact of allelic dropout on evidential value of forensic DNA profiles using RMNE. Bioinformatics, 25(2), 225-229. doi: 10.1093/bioinformatics/btn608

Wang, C. (2012). MicroDrop: a program for estimating and correcting for allelic dropout in nonreplicated microsatellite genotypes version 1.01. Retrieved from

Wang, C., Schroeder, K., & Rosenberg, N. (2012). A Maximum-Likelihood Method to Correct for Allelic Dropout in Microsatellite Data with No Replicate Genotypes. Genetics, 192(2), 651-669. doi: 10.1534/genetics.112.139519

Wang, J. (2004). Sibship Reconstruction From Genetic Data With Typing Errors. Genetics, 166(4), 1963-1979. doi: 10.1534/genetics.166.4.1963

Wang, S., Lewis, C., Jakobsson, M., Ramachandran, S., Ray, N., & Bedoya, G. et al. (2007). Genetic Variation and Population Structure in Native Americans. Plos Genetics, 3(11), e185. doi: 10.1371/journal.pgen.0030185
How to Cite
Ivan, J., & Parikesit, A. (2019). Computational Software for Assessing Allelic Droput. Indonesian Journal of Life Sciences, 1(1), 13-22.