The Stability of Phycocyanin, Phycoerythrin, and Astaxanthin from Algae Towards Temperature, pH, Light, and Oxygen as a Commercial Natural Food Colorant

  • Bryan Ashley Goyudianto Indonesia International Institute of Life Sciences
  • Catarina Meliana Indonesia International Institute of Life Sciences
  • Catarina Meliana Indonesia International Institute of Life Sciences
  • Debby Muliani Indonesia International Institute of Life Sciences
  • Jeslin J student of Indonesia International Institute of Life Sciences
  • Yohana Elma Sadeli Indonesia International Institute of Life Sciences
  • Nanda Rizqia Pradana Ratnasari Indonesia International Institute of Life Sciences
Keywords: phycocyanin, phycoerythrin, astaxanthin, stability, natural food colorant

Abstract

Nowadays, food industries are exploring more about naturally-derived colorants. Algae is proposed to be an excellent alternative source for natural colorants as it needs lesser biomass. Phycocyanin, phycoerythrin, and astaxanthin are commercially used blue-green, red, and red-orange algae-sourced pigments due to their high protein yield, health benefits, and ease of extractions methods. A literature survey conducted using Google Scholar and ScienceDirect database with inclusion and exclusion criteria gained 44 papers used as primary references to assess those algae pigments' stability towards temperature, pH, light, and oxygen for food applications. Low pH levels and addition of preservatives (sugar, citric acid) or polyhydric alcohols enhance phycocyanin range of stability (pH of 5–6 and >40oC with pH >5 or <3). Phycoerythrin’s stability at -20 to 4°C and neutral pH is improved by adding additives (citric acid, benzoic acid) or nanofibers, cross-linking method, complex formation, and microencapsulation. Phycocyanin and phycoerythrin’s light stability depend on the light’s composition, quality, and quantity; hence, utilization of dark-colored packaging to prevent light exposure is done. Astaxanthin’s instability towards light exposure (causing photoexcitation), temperature of >30°C, and pH of >4 can be solved through chitosan solution coating and microencapsulation using various wall materials and complex formation. Phycocyanin is unaffected against oxygen (unlike phycoerythrin and astaxanthin), yet all of them exert antioxidant properties. Therefore, the inconsistency of these colorants’ stability depending on food processing conditions demand further development through research to widen their commercial food applications.

Downloads

Download data is not yet available.

Author Biographies

Bryan Ashley Goyudianto, Indonesia International Institute of Life Sciences

Departement of Food Science and Nutrition, Indonesia International Institute for Life Sciences

Catarina Meliana, Indonesia International Institute of Life Sciences

Departement of Food Science and Nutrition, Indonesia International Institute for Life Sciences,

Catarina Meliana, Indonesia International Institute of Life Sciences

Departement of Food Science and Nutrition, Indonesia International Institute for Life Sciences,

Debby Muliani, Indonesia International Institute of Life Sciences

Departement of Food Science and Nutrition, Indonesia International Institute for Life Sciences,
Jakarta, Indonesia

Jeslin J, student of Indonesia International Institute of Life Sciences

Departement of Food Science and Nutrition, Indonesia International Institute for Life Sciences,
Jakarta, Indonesia

Yohana Elma Sadeli, Indonesia International Institute of Life Sciences

Departement of Food Science and Nutrition, Indonesia International Institute for Life Sciences,
Jakarta, Indonesia

Nanda Rizqia Pradana Ratnasari, Indonesia International Institute of Life Sciences

Departement of Bioinformatics, Indonesia International Institute for Life Sciences, Jakarta, Indonesia

References

Ambati, R., Phang, S., Ravi, S., &
Aswathanarayana, R. (2014).
Indonesian Journal of Life Sciences Vol. 03 | No. 02 | September 2021
http://journal.i3l.ac.id/index.php/IJLS
39
Astaxanthin: Sources, extraction,
stability, biological activities and Its
commercial applications—A review.
Marine Drugs, 12(1), 128-152.
doi:10.3390/md12010128
Anarjan, N., & Tan, C. P. (2013). Chemical
stability of astaxanthin nanodispersions
in orange juice and skimmed milk as
model food systems. Food Chemistry,
139 (1-4), 527-531.
doi:10.1016/j.foodchem.2013.01.012
Bachchhav, M., Kulkarni, M., & Ingale, A.
(2016). Enhanced phycocyanin
production from Spirulina platensis using
light emitting diode. Journal of The
Institution of Engineers (India): Series E,
98(1), 41-45. doi:10.1007/s40034-016-
0090-8
Bassijeh, A., Ansari, S., & Hosseini, S. (2020).
Astaxanthin encapsulation in multilayer
emulsions stabilized by complex
coacervates of whey protein isolate and
Persian gum and its use as a natural
colorant in a model beverage. Food
Research International, 137, 109689.
doi:10.1016/j.foodres.2020.109689
Bharmoria, P., Correia, S. F. H., Martins, M.,
Hernández Rodríguez, M. A., Ventura, S.
P. M., Ferreira, R. A. S., Carlos, L. D., &
Coutinho, J. A. P. (2020). Protein cohabitation: Improving the photoChemical stability of R-Phycoerythrin in
solid state. The Journal of Physical
Chemistry Letters.
doi:10.1021/acs.jpclett.0c01491
Bustos-Garza, C., Yanez-Fernandez, J., &
Barragan-Huerta, B. E. (2013). Thermal
and pH stability of spray-dried
encapsulated astaxanthin oleoresin from
Haematococcus pluvialis using several
encapsulation wall materials. Food
Research International, 54(1), 641-649.
doi:10.1016/j.foodres.2013.07.061
Chaiklahan, R., Chirasuwan, N., & Bunnag, B.
(2012). Stability of phycocyanin
extracted from Spirulina sp.: Influence of
temperature, pH and preservatives.
Process Biochemistry, 47(4), 659-664.
doi:10.1016/j.procbio.2012. 01.010
Christaki, E., Bonos, E., & Florou-Paneri, P.
(2015). Innovative microalgae pigments
as functional ingredients in nutrition.
Handbook of Marine Microalgae, 233–
243. doi:10.1016/b978-0-12-80077 6-
1.00014-5
de Morais, M., da Fontoura Prates, D.,
Moreira, J., Duarte, J., & Costa, J. (2018).
Phycocyanin from microalgae:
Properties, extraction and purification,
with some recent applications. Industrial
Biotechnology, 14(1), 30-37.
https://doi.org/10.1089/ind.2017.0009
Desai, R., Streefland, M., Wijffels, R., &
Eppink, M. (2016). Novel astaxanthin
extraction from Haematococcus pluvialis
using cell permeabilizing ionic liquids.
Green Chemistry, 18(5), 1261-1267.
doi:10.1039/c5gc01301a
Dominguez, H. (2013). Functional
Ingredients from Algae for Foods and
Nutraceuticals. Elsevier.
Gómez-Estaca, J., Comunian, T. A., Montero,
P., Ferro-Furtado, R. & Favaro-Trindade,
C. S. (2016). Encapsulation of an
astaxanthin-containing lipid extract from
shrimp waste by complex coacervation
using a novel gelatin-cashew gum
complex. Food Hydrocolloids, 61, 155-
162. doi:10.1016/j.foodhyd.2016.05.005
Guiry, M. D. (2012). How many species of
algae are there?. Journal of Phycology,
48(5), 1057-1063.
Hadiyanto, Christwardana, M., Sutanto, H.,
Aritonang, R., Amelia, D., & Suzery, M.
Indonesian Journal of Life Sciences Vol. 03 | No. 02 | September 2021
http://journal.i3l.ac.id/index.php/IJLS
40
(2018). Kinetic study on the effects of
sugar addition on the thermal
degradation of phycocyanin from
Spirulina sp. Food Bioscience, 22, 85-90.
Hsieh-Lo, M., Castillo, G., Ochoa-Becerra, M.
A., & Mojica, L. (2019). Phycocyanin and
phycoerythrin: Strategies to improve
production yield and chemical stability.
Algal Research, 42, 101600.
doi:10.1016/j.algal.2019.101600
Jurić, S., Jurić, M., Król-Kilińska, Ż.,
Vlahoviček-Kahlina, K., Vinceković, M.,
Dragović-Uzelac, V., & Donsì, F. (2020).
Sources, stability, encapsulation and
application of natural pigments in foods.
Food Reviews International, 1–56.
doi:10.1080/87559129.2020.1837862
Kannaujiya, V., & Sinha, R. (2016).
Thermokinetic stability of phycocyanin
and phycoerythrin in food-grade
preservatives. Journal of Applied
Phycology, 28, 1063-1070.
https://doi.org/10.1007/s10811-015-06
38-x
Kannaujiya, V. K., Kumar, D., Richa, J. P.,
Sonker, A. S., Rajneesh, V. S., Sundaram,
S., & Sinha, R. P. (2017). Recent advances
in production and the biotechnological
significance of phycobiliproteins. In New
Approaches in Biological Research. Nova
Science Publisher.
Kovač, D., Simeunović, J., Babić, O., Mišan,
A., & Milovanović, I. (2013). Algae in food
and feed. Food and Feed Research, 40(1),
21-31.
Lang, I., Bashir, S., Lorenz, M., Rader, S., &
Weber, G. (2020). Exploiting the potential
of cyanidiales as a valuable resource for
biotechnological applications. Applied
Phycology, 1-12.
Mandal, M. K., Chanu, N. K., & Chaurasia, N.
(2020). Cyanobacterial pigments and
their fluorescence characteristics:
Applications in research and industry.
Advances in Cyanobacterial Biology, 55–
72. doi:10.1016/b978-0-12-819311-
2.00005 -x
Martelli, G., Folli, C., Visai, L., Daglia, M., &
Ferrari, D. (2014). Thermal stability
improvement of blue colorant CPhycocyanin from Spirulina platensis for
food industry applications. Process
Biochemistry, 49(1), 154–159.
doi:10.1016/j.procbio.2013.10.008
Matos, P. (2017). The impact of microalgae
in Food Science and Technology. Journal
of the American Oil Chemists’ Society,
94(11), 1333–1350. doi:10.1007/s11746-
017-3050-7
Mezquita, P., Huerta, B., Ramírez, J., &
Hinojosa, C. (2013). Milks pigmentation
with astaxanthin and determination of
colour stability during short period cold
storage. Journal of Food Science and
Technology, 52(3), 1634-1641.
doi:10.1007/s13197-013-1179-4
Mezquita, P., Barragán-Huerta, B., Ramírez,
J., & Hinojosa, C. (2014). Stability of
astaxanthin in yogurt used to simulate
apricot color, under refrigeration. Food
Science and Technology (Campinas),
34(3), 559-565. doi:10.1590/1678-
457x.6386
Mezquita, P. C., Alvarez, C. E., Ramirez, J. P.,
Munoz, W. B., Fuentes, F. S. & RuizDominguez, M. del C. (2020). Isotonic
beverage pigmented with waterdispersible emulsion from astaxanthin
oleoresin. Molecules, 25(4), 841.
doi:10.3390/molecules25040841
Mishra, S. K., Shrivastav, A., Pancha, I., Jain,
D., & Mishra, S. (2010). Effect of
preservatives for food grade CPhycoerythrin, isolated from marine
Indonesian Journal of Life Sciences Vol. 03 | No. 02 | September 2021
http://journal.i3l.ac.id/index.php/IJLS
41
cyanobacteria Pseudanabaena sp.
International Journal of Biological
Macromolecules, 47(5), 597–602.
doi:10.1016/j.ijbiomac.2010.08.005
Munier, M., Jubeau, S., Wijaya, A.,
Morancais, M., Dumay, J., Marchal, L.,
Jaouen, P., & Fleurence, J. (2014).
Physicochemical factors affecting the
stability of two pigments: Rphycoerythrin of Grateloupia turuturu
and B-phycoerythrin of Porphyridium
cruentum. Food chemistry, 150, 400-407.
doi:10.1016/j.foodchem.2013.10.113
Nowruzi, B., Fahimi, H., & Lorenzi, A. (2020).
Recovery of pure C-phycoerythrin from a
limestone drought tolerant
cyanobacterium Nostoc sp. and
evaluation of its biological activity. Anales
De Biología, 42, 115-128.
https://doi.org/10.6018/analesbio.42.1 3
Özkan, G., & Bilek, S. E., (2014).
Microencapsulation of natural food
colourants. International Journal of
Nutrition and Food Sciences, 3(3), 145-
156. 10.11648/j.ijnfs.20140303.13
Pagels, F., Guedes, A., Amaro, H., Kijjoa, A., &
Vasconcelos, V. (2019). Phycobiliproteins
from cyanobacteria: Chemistry and
biotechnological applications.
Biotechnology Advances, 37(3), 422-443.
https://doi.org/10.1016/j.biotechadv.20
19.02.010
Pandey, V., Pandey, A., & Sharma, V. (2013).
Biotechnological applications of
cyanobacterial phycobiliproteins.
International Journal of Current
Microbiology and Applied Sciences, 2(9),
89-97.
Pan-utai, W., Kahapana, W., & Iamtham, S.
(2017). Extraction of C-phycocyanin from
Arthrospira (Spirulina) and its thermal
stability with citric acid. Journal of
Applied Phycology, 30(1), 231–242.
doi:10.1007/s10811-017-1155-x
Pereira, T., Barroso, S., Mendes, S., & Gil, M.
(2020). Stability, kinetics, and application
study of phycobiliprotein pigments
extracted from red algae Gracilaria
gracilis. Journal of Food Science, 85(10),
3400-3405. doi:10.1111/1750-3841.154
22
Pradeep, H., & Nayak, C. (2019). Enhanced
stability of C-phycocyanin colorant by
extrusion encapsulation. Journal of Food
Science and Technology, 56(10), 4526-
4534. doi:10.1007/s13197-019-03955-8
Prado, J. M., Veggi, P. C., Náthia-Neves, G., &
Meireles, M. A. A. (2018). Extraction
methods for obtaining natural blue
colorants. Current Analytical Chemistry,
14.
doi:10.2174/157341101466618111512
5740
Pumas, C., Peerapornpisal, Y.,
Vacharapiyasophon, P., Leelapornpisid,
P., Boonchum, W., Ishii, M., &
Khanongnuch, C. (2012). Purification and
characterization of a thermostable
phycoerythrin from hot spring
Cyanobacterium leptolyngbya sp. KC45.
International Journal Of Agriculture And
Biology, 14(1), 121-125.
Rahman, D., Sarian, F., & van der Maarel, M.
(2019). Biomass and phycocyanin content
of heterotrophic Galdieria sulphuraria
074G under maltodextrin and granular
starches–feeding conditions. Journal of
Applied Phycology, 32(1), 51-57.
https://doi.org/10.1007/s10811-019-01
957-9
Rastogi, R. P., Sonani, R. R., & Madamwar, D.
(2015). Effects of PAR and UV radiation
on the structural and functional integrity
of phycocyanin, phycoerythrin and
Indonesian Journal of Life Sciences Vol. 03 | No. 02 | September 2021
http://journal.i3l.ac.id/index.php/IJLS
42
allophycocyanin isolated from the marine
Cyanobacterium Lyngbya sp. A09DM.
Photochemistry and Photobiology, 91(4),
837–844. doi:10.1111/php.12449
Rodriguez-Amaya, D. (2016). Food
carotenoids (p. 203). Brazil: Wiley
Blackwell.
Saini, R., Moon, S., & Keum, Y. (2018). An
updated review on use of tomato pomace
and crustacean processing waste to
recover commercially vital carotenoids.
Food Research International, 108, 516-
529. doi:10.1016/j.foodres.2018.04.003
Senthilkumar, N., Kurinjimalar, C., Thangam,
R., Suresh, V., Kavitha, G., Gunasekaran,
P., & Rengasamy, R. (2013). Further
studies and biological activities of
macromolecular protein R-Phycoerythrin
from Portieria hornemannii. International
Journal of Biological Macromolecules, 62,
107-116. doi:/10.1016/j.ijbiomac.2013
.08.004
Sigurdson, G. T., Tang, P., & Giusti, M. M.
(2017). Natural colorants: Food colorants
from natural sources. Annual Review of
Food Science and Technology, 8(1), 261–
280. doi:10.1146/annurev-food-030216-
025
Sonani, R. R., Singh, N. K., Kumar, J., Thakar,
D., & Madamwar, D. (2014). Concurrent
purification and antioxidant activity of
phycobiliproteins from Lyngbya sp.
A09DM: An antioxidant and anti-aging
potential of phycoerythrin in
Caenorhabditis elegans. Process
Biochemistry, 49(10), 1757–1766.
doi:10.1016/j.procbio.2014.06.022
Soukoulis, C., & Bohn, T. (2017). A
comprehensive overview on the micro
and nano-technological encapsulation
advances for enhancing the chemical
stability and bioavailability of
carotenoids. Critical Reviews in Food
Science and Nutrition, 58(1), 1-36.
doi:10.1080/10408398.2014.971353
Zhang, Z., Li, Y., & Abbaspourrad, A. (2020).
Improvement of the colloidal stability of
phycocyanin in acidified conditions using
whey protein-phycocyanin interactions.
Food Hydrocolloids, 105, 105747.
doi:10.1016/j.foodhyd.2020.105747
Zhou, T., Wang, X., Ju, Y., Shi, C., & Kan, G.
(2018). Stability application and research
of astaxanthin integrated into food. IOP
Conference Series: Materials Science and
Engineering, 394, 022007.
doi:10.1088/1757-899x/394/2/ 022007
Zhao, T., Yan, X., Sun, L., Yang, T., Hu, X., &
He, Z. et al. (2019). Research progress on
extraction, biological activities and
delivery systems of natural astaxanthin.
Trends in Food Science & Technology, 91,
354-361. doi:10.1016/j.tifs.2019.07.0 14
Published
2021-11-03
How to Cite
Goyudianto, B., Meliana, C., Meliana, C., Muliani, D., J, J., Sadeli, Y., & Ratnasari, N. (2021). The Stability of Phycocyanin, Phycoerythrin, and Astaxanthin from Algae Towards Temperature, pH, Light, and Oxygen as a Commercial Natural Food Colorant. Indonesian Journal of Life Sciences, 3(2), 28-42. https://doi.org/https://doi.org/10.54250/ijls.v3i2.126
Section
Indonesian Journal of Life Sciences